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ABSTRACT

DATA-DRIVEN TEST CASES FOR SUSTAINABILITY ASSESSMENT

OF SMART GRID INITIATIVES IN ORGANIZED ELECTRICITY MARKETS

VENKAT DURVASULU

2019

The primary aim of this dissertation is to deliver a technique to augment power

system test cases with realistic open-source data to represent a deregulated power system.

These test cases are intended to be used by power system researchers who require a test

case that is capable of performing economic and environmental analysis on a bulk-power

level. These test cases are capable of estimating the cost of bulk-energy for economic

analysis and harmful greenhouse gas (GHG) and air polluting (AP) emissions for

environmental sustainability analysis. These cases are developed for simulations that are

intended to be at the transmission level where the independent system operator (ISO) has

control. In the second part of this dissertation, an aggregator based demand response (DR)

model is studied as-a-service to the bulk-power market, and its economic benefit is

estimated using the augmented test cases.

The augmentation technique presented in this dissertation has three-layer data over

the existing generator information in a test case. The first layer of augmented data

replaces the cost functions of the test case generators with functions developed based on

the generator offers from a real electricity market. An unsupervised learning technique

had to be implemented to classify the market offer data because the identity of the

generators is masked to honor a fair market policy. The offer data was converted to cost
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functions and is sampled statistically such that the test cases represent a similar generator

supply curve as the real power system.

In addition to the cost functions layer, the test case generator data has an

augmented generator fuel-turbine data. This data in a test case will represent the energy

sources and generator technology of the system that the test case is intended to emulate.

The hourly energy mix of the electricity market is utilized to augment the generator

fuel-turbine type of test case generators. Because the number and capacities of test case

generators may not represent the real system, assigning one fuel-turbine type to one test

case generator will not result in a right energy mix. The augmentation technique creates

an additional layer of information for each test case generator which can represent

multiple fuel-types. The third layer of augmented data on test cases contains the heat

curve and emission information. With all these layers of data, the test case is capable of

representing the dynamic cost nature of a deregulated power system and is able to

dispatch generators similar to the real power system. PJM interconnection data was

chosen to implement the proposed augmentation technique. The marginal cost result from

optimal power flow (OPF) is compared with the marginal cost of energy of the PJM

interconnection along with the GHG and AP emissions.

Smart-grids have opened opportunities for end customers to participate in the

power system operation. DR is one of the activities that the end customers can perform to

participate in the electricity market. Revenue earned from energy markets has been

relatively low compared to DR used for capacity markets and ancillary services. An

aggregated DR model participating in the bulk-power market as a service through a

pool-based entity called demand response exchange (DRX) is proposed to improve the



www.manaraa.com
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benefits of DR to the market. The economic benefits to the market entities have been

studied using the proposed augmented test cases.

The key contributions of this dissertation are:

• power systems test case generator data for researchers who do not have access to the

real power system data,

• a technique that utilizes only open-source data to develop augmented data for any

test case to represent the dispatch of a real power system in terms of cost, and

emissions,

• a DR model capable of improving the revenue for DR participants in the

bulk-energy market.
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CHAPTER 1 Introduction

1.1 Background

The power systems have evolved from a small local utility in the late 19th century

to one of the largest industries in the U.S. in the 21st century. The electric power industry

is adapting and evolving to keep up with the ever-growing need for electricity. The

importance of power systems is only going to grow in the future with innovations in a

generation to the delivery of electricity . The electric power industry is going to be the

most critical industry, and the sustainability of this industry is vital for any nation.

The power system generation resources have been undergoing rapid changes over

the last decade. Illustrated in Fig. 1.1 is the rapid change in U.S. electricity sector fuel mix

over the last decade. The changes happened at such a rapid rate that, natural gas which

was the third most used energy resource before 2008 is the primary source of energy in

2018 [1]. Renewable energy which includes wind, solar, and geothermal was the least

among all generating sources before 2008 is producing more energy than hydropower as

of 2018.

One of the prime reasons that allow an industry this large to change at such a rapid

rate is deregulation [2]. The power system in the United States has witnessed significant

regulatory changes over the past two decades. The deregulated power system has granted

open access to the transmission system, which has encouraged competition between

generators and distributors of electrical power [3]. Independent System Operators (ISO) is

established as a central entity to organize and operate the bulk-power markets by

facilitating the trade of electricity between power producers and consumers [4]. In a
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Figure 1.1. U.S. electric sector generation by major energy sources from 2008 to 2018 in
one month resolution

deregulated power system, each generator and load-serving entities are independent

actors, participating in the ISO power market by submitting bids/offers through a cyber

network, making the cyber-physical power system (CPPS) one of the largest

cyber-physical systems in operation.

The ability to operate the power system securely in the most economical way was

the ultimate goal of any innovation. But with rising environmental awareness and global

warming concerns, the goal of a power system operator should be to operate the system

securely, economically, and also environmentally responsible. In 2016, the electric power

industry generated the largest share (28%) of greenhouse gas (GHG) emissions across all

the primary energy consuming sectors in the U.S. [5]. In 2016, approximately 68 % of the

electricity was generated from fossil fuel combustion the majority of which is coal and

natural gas [6]. Apart from GHG fossil-fueled power plants also produce harmful air

pollutants (AP) such as SO2 and NOx that reduce the air quality and are also the primary
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cause for acid rain. All primary energy consuming sectors are taking steps to curb GHG

emissions to control global warming. The electricity sector has an extensive research

community that is developing technologies that would reduce GHG emissions.

The future of power systems research innovating in any sector from generation to

delivery of power must improve at least one of the goals (security, economical operation,

and environmental responsibility) while not affecting the others. All the physical and

regulatory changes in the power system must be taken into account while making an

assessment of the impact of the research. One of the recent physical change is the

availability of communication technologies to power systems.

Advancement in communication technologies in power systems has opened

opportunities for consumers to participate in the smart-grid operation actively. Consumers

are participating either by changing their demand or by generating electricity. Consumers

change their demand to improve either the physical security or economic operation of the

grid in response to financial benefit to them [7]. The voluntary change in demand for

financial benefits is called demand response (DR). There is a growing interest in studying

the social-environmental impact of DR [8].

Advancement in solar cell technologies has made solar energy affordable to

residential customers. Apart from solar, energy storage in the form of electric vehicles and

batteries have formed an essential infrastructure to consumers [9]. Consumers

participation in power systems either by distributed generation or demand response is

being extensively studied for economic impact on the system[10]–[12]. Cheaper

communication systems and availability of high computational power even at the

consumer level have allowed high-level optimization between assets to improve the
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revenue of power entities [13].

The power system infrastructure is a critical and expensive system to experiment

on directly. All the state-of-art research for change in demand or generation are published

based on simulations. The network information of a real power system interconnection is

not publicly available due to security concerns. All research data are simulated on power

system test cases that are a synthetic representation of the real system [14]. A realistic test

case is a valuable piece of an asset for a power system researcher. A lot of research is

being conducted recently to develop realistic state-of-art test cases [15]

Even though the existing state-of-art test cases are good enough to prove most of

the research techniques, they are not adequate enough to make an investment decision

based on the results because none of these test cases are capable of exhibiting the dynamic

nature of an electricity market.

1.2 State-of-Art Power System Research

The rapid growth of the electric power industry is possible because of the

intellectual research community of power systems. There is a strong motivation across the

world to create a secure, economical and sustainable and clean electric power

system [16]–[18]. Even though all through the 20th century the electric power industry

grew as a regulated system, the cost aspects of the electricity was foreseeable as it was

only based on the cost of fuel. At the dawn of 21st century the economic aspect has

changed because of deregulation and the cost of electricity is not foreseeable [19].
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1.2.1 Economic Analysis Research

The economic analysis, most importantly of those research in which the cost of

electricity is a deciding factor will need a test that represents a deregulated power system.

In one of the research works the authors propose an optimal strategy for ISO to schedule

DR such that it maximizes the contribution of DR [20]. The proposed DR scheduling

strategy was simulated on a IEEE-RTS test case, and the benefits in conclusion were

drawn on the basis of the profit which depends on the actual cost of electricity.

The RTS-96 test case used for simulations is an older test that does not represent

any electricity market-based cost functions [21]. One of the conclusions was related to

emission reduction. Though the algorithm is capable of reducing the emissions, the exact

amount that they claim through this simulation setup may not be the original estimate as

the fuel mix of the power system had changed from 1996 when the test case was published

to 2014 when this work was published.

One of the most commonly used objective function in analyzing a deregulated

power system is the surplus minimization. One of the use cases for surplus minimization

is in the study of congestion management [22] in which the author considered a

deregulated operation on an IEEE 30-bus system. The proposed optimization algorithm is

capable of scheduling loads and generators to reduce congestion to improve the economic

reliable operation of the system. But, the actual savings shown may not reflect any real

system, as the cost functions for generators used in the minimization problem were not

based on any real system.

There are many other optimization techniques for demand response and
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congestion management that are proposed to outperform the state-of-art and show

improvement in revenue [23]–[25]. The results analysis of these works are performed

based on a deregulated system, but the simulations are conducted on a system that was

designed for a regulated power system. It is unclear if the revenue claims made in these

publications can be transpired to the real-world revenue as there is no cost data affiliation

to a real deregulated system.

1.2.2 Emissions Analysis Research

Power systems research to evaluate the effect smart grid initiatives like DR/DER

on emissions is increasing. The pressure to reduce GHG and AP from the electric power

sector is the driving point of this research. A smart city EMS work that presents the effect

of residential solar power on the effect of CO2 reduction simulated on a 31-bus

distribution network [26]. The change in demand has to be simulated on a transmission

level system to evaluate its effect on large fossil-fueled generators. Emissions are reduced

only when the fossil-fueled generation is reduced.

One of the research works presents a novel technique to optimize demand based

on pollutant emissions [27]. In this work, the authors utilize IEEE 14-bus, and the PJM

Interconnection system to implement the proposed load management algorithm. Only the

results from the IEEE test case were presented in detailed as the authors cannot publish

the details of the PJM network. The results from the PJM network were only presented as

proof of validation of their work. Very few researchers and grid operators have access to

the real network, most of which cannot be published for security reasons.

There are multiple load optimization projects and researches that also look into
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estimating and reduce emissions [28]–[30]. The test case serves the purpose of evaluating

the functionality of the algorithm. A test case with real generators attributes(fuel mix, and

emission factors) are required to make an assessment of the actual impact of these works

on the actual emissions.

1.2.3 Demand Response Research

DR impact research is studied from residential EMS [31] to the market level [32].

DR is projected to be one of the most important assets in the smart-grid initiatives. Most

of the economic benefits from DR are evaluated from the retailer’s point of view. The

economic benefits of DR are evaluated as a cost-reducing technique on the distribution

side [33]–[35]. New regulations for DR participation in the market have been issued [36]

to encourage more market-level participation. DR has emerged as a sizeable asset in the

capacity and ancillary service market [37].

Despite the regulations, the revenue earned from the energy market is lower

compared to the capacity market. Unlike the ancillary, and capacity market which

improve physical security and reliability, the energy market is more of economic service.

One of the DR models to participate in the market operation is by trading DR offers [25],

[35], [38]. There is a strong motivation to explore the opportunities for DR in the energy

market. A test case that can produce a time-series of prices similar to a deregulated power

system is required to conduct an exploratory analysis of DR models in the energy market.

1.2.4 Sustainability Research

Sustainability of a critical industry like the electricity sector is vital to any nations’

growth. According to a 1987 United Nations report, sustainable development meets our
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need without compromising our future [39]. The goals of sustainable development as

identified by the 2005 World Summit on Social Development are economic well-being,

environmental sustainability, and social development [40].

In one of my publications, an aggregated DR model for residential customers is

designed and the effectiveness of this model is presented as sustainability metrics [41]1.

The economic sustainability of this DR model has been proposed as the savings for the

customer using the DR. The change of demand was simulated on a 6-bus network to

evaluate environmental sustainability as a factor of reduced capacity factor of the marginal

generating unit. The test case was modified to represent the installed capacity of a real

power interconnection. The lack of real network generation information withheld us from

validating the reduced emissions against a real system.

1.3 Objectives

There are many smart-grid initiatives that are aimed to make the power systems

more reliable, economical and sustainable. A test case that is capable of making realistic

costs and emissions assessment will be a valuable asset for the power systems research

community. Given the data of a real electricity market, the core objectives of this

dissertation are:

1. to develop market-based synthetic test case data that represents the dispatch of a real

deregulated electricity market statistically,

2. use the market-based test cases to evaluate the sustainability of an aggregator-based

DR participating in the bulk-power market.
1This work was performed jointly in collaboration with the full list of co-authors in [41], and was awarded

the best paper award in the Smart City Conference at Bangkok, 2017
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1.4 Contributions

Following contributions from this work are aimed to improve the existing

state-of-art in power system research:

1. provide the power system research community with the power system test case data

that represent the cost, and emission performance of a real power system,

2. a generalized technique to augment any standard test case using open-source data to

perform the time-series simulation that can represent a real-power system costs and

emissions,

3. understanding the factors affecting DR participants in energy markets to help

improve their revenue,

4. ability to explore new smart-grid initiatives using the market-based synthetic test

case data and evaluate its economic and environmental sustainability.

1.5 Dissertation Outline

In the Chapter 2 a literature review of the state-of-art test cases are provided and

the need for developing the augmentation based test cases. The first data layer in the

augmentation process is presented in Chapter 3 in which PJM market offer data is

analyzed using unsupervised learning techniques to cluster the masked offer data. This

data is sampled over to augment the test case cost function and is updated for every day in

a time-series simulation. The proposed technique is tested on eight different test cases

from six buses to 2000 buses. The next two layers of augmented test case data are the

fuel-turbine type and the heat-curve and emission factors data for the generators. This
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technique is presented in Chapter 4, where the market hourly fuel data is augmented on to

the test case by co-relating the capacity factors. Finally in Chapter 5 a bulk-market level

DR model is proposed, and its economic analysis is conducted using the proposed

augmented test case.
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CHAPTER 2 State-of-Art Test Cases

A review of the present state-of-art test cases along with the missing information

required to make market-level simulations is presented in this chapter. The framework to

augment these test cases to perform similar to a real deregulated system is also presented

in this chapter.

2.1 Power Systems Tests Cases

Power system test cases are developed to perform power flows that are used to

conduct exploratory analysis on the design and performance of the system. Test cases are

developed to statistically represent a real power system so that the results obtained from

simulations reflect the real system performance. Power system researchers analyze the

physical security such as the physical limits violation (voltage, and lines), and the

economic analysis based optimal power flow/economic dispatch. Generators are

dispatched based on a cost minimization problem called as economic dispatch (ED). The

generator cost functions are critical information to perform optimal power flow (OPF)

from which economic analysis can be performed.

There have been many efforts to develop test cases for realistic economic studies.

An approximate model of the European interconnection was developed based on the real

network to study the impact of cross-border trades used for transmission pricing and

congestion management [42]. The developed model was adequate to study a specific

problem of cross-border trade, but due to unavailability of the latest data, the authors used

thermal and nuclear plant pricing data published in 1995, which is more than two decades

out-of-date [43]. Recently, there have been efforts to develop large-scale synthetic test
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cases that represent the complexity of today’s electricity grid for energy economic studies.

In [15], [44], two approaches were proposed to augment their developed synthetic test

cases with generator cost data that represents the behavior of an actual power system. Unit

commitment and economic dispatch for one day were simulated on the modified test case

to illustrate its capabilities to perform economic studies.

Most existing literature assigns fuel-cost based cost functions to generators on test

cases, whereas in the post-deregulation ISO-organized market, the market is cleared based

on generator offer prices [45], [46]. There are multiple factors apart from the fuel costs

that govern the offer strategy of a generator participating in a competitive electricity

market [47]. There is sound research in bidding strategy for generator offers of various

energy sources under different market scenarios, but there is a lacking methodology for

using such bid strategies in test cases in which the generator types are unknown [47], [48].

In [49], a method is presented to calculate the average bid price for groups of generators

participating in the day-ahead market, but the work does not discuss a method to use these

prices in power system test cases.

2.2 Deregulated Power System Test Cases

Detailed generator characteristics for a realistic test case based on the IEEE-118

bus system were developed in [50]. A detailed generation model with constraints such as

ramping rates, operational limits, and heat rates for the generators in the power system test

case was presented. The generators in the modified IEEE-118 bus system use linear heat

rates, and the generation capacity has been increased to 24,500 MW provided by 327

generators. The generator energy mix is based on the future (2025) projected installed
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capacity of a South California. There is no way to validate the cost functions of this test

case, nor its capability to perform similar to a market over a time-series.

There are two test cases that have been developed for simulations based on

deregulated power systems with generator offers as cost functions. One of them is the

ISO-NE 8-bus test system which models its 8 buses based on the 8 regions under the

ISO-NE [51]. The cost functions are said to be developed from the market data but do not

explain the technique to update them as the market offer costs keep changing. The other

test case that is based on an ISO is the Federal Energy Regulatory Commission, Regional

Transmission Operator Unit commitment Test System (FERC RTO UC) which has

detailed generator information, but the network information is not open source [52].

Among these test cases, only the FERC RTO UC test system utilizes the offer data

from a real electricity market (PJM) to develop detailed generator information [52]. Since

the generator fuel information is masked in the PJM offer data, they utilized an

unspecified statistical technique with few assumptions to match the offered size to the

EIA-411 data which contains the installed capacity of a generator [53]. Even though the

generator data from the test case is made open, the network information of this test case is

considered as a part of Critical Energy Infrastructure Information (CEII).

2.3 Proposed Data-Driven Augmented Test Cases

Based on the literature presented in the Section 4.2, the test cases require generator

cost functions that represent the electricity market generator offer data. Analyzing the

literature presented in Section 2.2 it is clear that a fixed cost function is not capable of

producing a time-series similar to a real-deregulated power market. To overcome these
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issues an augmented data for any standard power system test case is proposed in this work.

The line, bus, and generator data which are developed for the state-of-art test cases

are static in nature, and a do not change drastically over time. The dynamic data in a

deregulated system are the cost functions of the generators. Even though the installed

capacity of the generation changes, the rate at which this change occurs is not high.

However, the fuel mix that contributes to this capacity is changing at a rapid rate.

The generator cost and fuel mix have to be updated dynamically for any

time-series simulations that represent the dispatch of a deregulated power system. Fig. 2.1

represents the various data that are required to augment these test cases to represent the

dispatch of a real power system. All the data required to develop the augmented data

comes from open-sources.

Figure 2.1. A graphical representation of the proposed three-layer augmented data for test
cases to represent a real market.

The first layer of augmented data over a test case generator is assigning a cost

function which is developed based on the generator offer bids submitted to an electricity
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market. The method used to develop the augmented cost function data is presented in

Chapter 32. Based on the dispatch of the test case generators using the market-based cost

functions, fuel-turbine type is assigned based on the hourly fuel mix of the real system.

Over this data, a heat curve and emission factors data are assigned to the test case

generator. The data required to develop the fuel, and emission data are obtained from

publicly available data. The method used to develop the augmented fuel, and emission

data is discussed in Chapter 4.

2This data is a part of the publication [54],and is publicly available in a open-source repository at https:
//github.com/Dvenkat30
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CHAPTER 3 Market-Based Generator Cost Functions for Power System Test Cases

3.1 Introduction

Every generation company participating in the bulk-power market is an

independent entity trying to maximize their profit. Therefore, the fundamentals of

economic analysis to determine the marginal cost of energy has to be changed from

minimizing the total sum of generator fuel costs, to minimizing the cost of discrete

generator offers (bids) [55]. Fuel cost is just one of the deciding factor in determining the

$/MWh offer price for a generator participating in an ISO-based electricity market [49].

Because the ISOs determine the marginal energy cost from minimizing generator offers,

to reflect these prices in simulations, test cases should be provided with market-based

generator offers. Test cases that reflect market-offers are required for performing analysis

of power system studies, such as demand response, where price of electricity is a deciding

factor [56], [57]. Detailed power system test cases with realistic cost functions that

represent actual electricity market wholesale prices are highly valuable to industry and

academia.

Test cases with generator cost functions based on fuel costs were accurate to

perform economic studies of power systems before restructuring. Simulation studies are

an essential tool for power system engineers during planning, research, and operation.

Simulation results for new policy or operational changes should reflect real world costs for

deciding on whether or not to adopt the changes. Most power system test cases available

for simulation were developed based on the Mid Western American Electrical Power

System in the 1960’s and 1970’s [58]. The generator cost functions used in these test cases
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are developed based on then fuel prices and heat curves of mostly thermal units. Studies

such as contingency analysis and voltage stability can still be performed without issue on

such systems, but accurate economic studies (e.g., demand response) cannot be performed

without updates to the fuel-cost based generator cost functions.

In this chapter, a methodology to use publicly available market data to design

market-based generator cost functions is presented. These cost functions are used to

augment existing power system test cases that can accurately represent real marginal

energy costs for use in economic studies. Hourly marginal energy costs and demand for

most U.S. electricity markets is publicly available. Additionally, daily generator offer data

is available with a four-month delay [59]. Because the generator offer data is sanitized of

identifying information, a statistical pattern recognition (K-means clustering) to cluster the

market generators into types. The three generator types (K = 3 clusters) identified from

the PJM market (base, intermediate, and peak generators) are used to fit market-based

generator cost functions. These new cost functions are used to augment existing power

system test cases to more accurately represent market behavior of marginal costs.

This methodology is used to augment eight power system test cases of different

sizes to represent the generator mix of a real electricity market. Optimal power flow

(OPF) was executed on these test cases, and the marginal energy costs produced by the

simulation are compared to the real day-ahead market prices. The major contributions of

this chapter are:

1. the design of a methodology to augment existing power system test cases with

market-based generator cost functions to represent the the marginal energy costs of real
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power markets for use in economic studies,

2. a comparison of the proposed approach to the existing state-of-the-art fuel-cost based

power system test cases for multiple year-long OPF simulations with one-hour

resolution.

The following section of this chapter introduces the existing state-of-the-art

fuel-cost based power system test cases and illustrates the need for market-based cost

functions for use in analyzing economic impact in power system simulations. The

methodology for augmenting power system test cases with market-based generator cost

functions is described in Section 3.5. In Section 3.8, the eight power system test cases are

presented and the simulation parameters are given. A comparative study of the marginal

energy price of each augmented test case is conducted for 2014–2016 in a one-hour

resolution in Section 3.9. The output of our method is compared to the actual PJM market

and the existing fuel-cost based method. Concluding remarks and directions for future

work are presented in Section 3.10.

3.2 Economic Analysis of Electric Power Systems

3.2.1 Overview of Existing Techniques

A brief description of the calculation of the marginal cost of energy is presented in

this section. Some of the key regulatory changes have caused existing fuel-based generator

cost functions inadequate for simulation studies with an economical focus (such as the

impact of demand response or distributed energy resources). Economic studies in power

systems aim to reduce the cost of energy and to improve economic efficiency. In most of

these studies, the deciding factor in adopting a method depends on the marginal price of
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energy, which can obtained from the result of OPF [60]. In the following subsection,

generator cost functions and the concept of OPF are introduced. An illustrative example

comparing the marginal energy costs of PJM versus the existing state-of-art fuel-based

generator cost functions highlights the need for market-based generator cost functions

when trying to calculate energy costs in an ISO organized market. The section concludes

with changes to generator costs due to regulatory changes post market restructure.

3.2.2 Optimal Power Flow

OPF is the core component of economic studies, introduced in the 1960’s [61],

[62]. In this dissertation, all simulations on power system test cases were carried out using

the OPF formulated in MATPOWER [63]. To illustrate the cost minimization problem of

the power system, OPF can be formulated in its most simplified form without considering

some of the constraints (e.g., bus voltage limits) in Eqs. (5.1–5.5). For generator i, let Ci

be the cost function, and Pi be generation output.

min
Pi

N

∑
i=1

Ci(Pi) (3.1)

Ci(Pi) = αiP2
i +βiPi + γi (3.2)

N

∑
i=1

Pi =
M

∑
j=1

D j +PL (3.3)

subject to,
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Pmin
i ≤ Pi ≤ Pmax

i ,∀i (3.4)

0≤ Pi j ≤ Pmax
i j ,∀i, j (3.5)

The objective function Eq. (5.1) is subject to constraints Eqs. (5.3) and (5.5),

where D j is the demand at location j among M load points on the network. At any given

instant, the total generation must equal the total demand plus system transmission losses

(PL), as represented in Eq. (5.3). Eq. (5.4) describes the generator operational limits, and

Eq. (5.5) describes the line flow limits for all lines/transformers in the network. Eq. (5.2)

represents the polynomial cost of operation of generator i with coefficients αi ($/MWh2),

βi ($/MWh), and γi ($/h). The Lagrangian multipliers of this optimization problem

provide the marginal energy cost of the system [61]. The marginal cost of energy is the

cost incurred in the production of one additional unit (MWh). When line limits are

reached, generators must be dispatched non-optimally (i.e., different marginal costs), and

the marginal price of the entire system cannot be equal. The difference in marginal energy

cost is called a congestion cost, and the sum of congestion cost and marginal energy cost

is the location marginal price (LMP). Every generator is paid the LMP at the common

point of coupling (POC) to the electric grid, and every load needs to pay the LMP at its

POC. The last committed generator is called the marginal generator, and its incremental

offer decides the cost of bulk electricity at every POC.
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3.3 Fuel-Cost Based Generator Cost Functions

Generator cost functions in the state-of-the-art synthetic test cases [44] are derived

based on input-output characteristics, efficiency, and fuel costs of the major energy

contributors like natural gas, coal, nuclear, and hydro/renewable. The input-output

characteristic of a thermal generator is the ability to convert thermal energy into electrical

energy; these data may be obtained from design parameters of that generator. The cost

function for a thermal generator i can be represented as Eq. (3.6), where a0i ($/h) is its

no-load cost to operate, and b1i (MBtu/MWh) and b2i (MBtu/MWh2) are the quadratic

coefficients of the thermal input-output curve of that generator with fuel cost Fi, expressed

as $/MBtu. To obtain the quadratic cost coefficients for a generator, Eq. (3.6) relates to

Eq. (5.2), where Fib2i equals αi, Fib1i equals βi, and a0i equals γi. The cost function of

hydro/renewable generators comprises only no-load cost, because they are non-thermal

units and do not have fuel costs associated for generating electricity.

Ci(Pi) = a0i +Fi(b1iPi +b2iP2
i ) (3.6)

The reliability test system of 1996 (RTS-96) is one of the most utilized test case

for power flow studies. This test case is chosen to built the state of art test case by

augmenting such that it represents the real-world generation mix of the PJM region for the

year 2014 [64]. The cost functions are developed based on fuel costs of the major energy

sources during 2014 [1] and is presented in Table 3.1. The cost functions are developed

using the no-load cost and the fuel costs of the thermal generators and thermal data from
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EIA [65], and only the no-load costs for the non-thermal generators.

To illustrate the capabilities of the test case, OPF was simulated for one year using

MATPOWER [63] with a demand curve with a one-hour resolution. The marginal energy

cost of the test case were compared to the PJM marginal energy cost for 2014 using an

appropriately scaled demand curve from PJM for the same time period. In this

dissertation, I will use the notation that lower case variables describe quantities used for a

power system test case, and capital variables describe quantities of the real power

network. To simulate OPF at hour t, the load d j(t) on any bus j is obtained using

Eq. (4.1), where d′j is the default demand on bus j provided in the test case, Dmkt(t) is the

total demand on the real PJM network, and Dmax
mkt is the annual peak load of PJM for the

year in consideration (i.e., 2014 for this simulation). A scaling factor, ψ , is used to scale

the default load such that the ratio of load to generation is similar to that of the real

market. For this simulation, the scaling factor was set at ψ = 0.96. The scaling factor is

described in detail in Section 3.8. The weighted average marginal price of all nodes in the

test case is compared to the marginal price of the PJM market. The weighted average

marginal price is defined using Eq. (3.8), where Λ(t) is the weighted average marginal

price of electricity (in $/MWh) of the the test case for hour t, and λ j(t) is the LMP at bus j

among the s buses of the power system test case.

d j(t) = ψd′j
Dmkt(t)
Dmax

mkt
, ∀ j = 1, ...,s (3.7)

Λ(t) =
∑

s
j=1(λ j(t)×d j(t))

∑
s
j=1 d j(t)

(3.8)
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Table 3.1. Monthly average fuel costs of coal and natural gas for the year 2014.

month coal ($/MBtu) natural gas ($/MBtu)
January 2.29 7.02
February 2.32 7.40
March 2.36 6.00
April 2.39 5.07
May 2.40 4.93
June 2.38 4.84
July 2.38 4.43
August 2.37 4.12
September 2.37 4.20
October 2.31 4.10
November 2.30 4.48
December 2.51 4.36

The simulation was performed on the RTS96 test case using the 2014 PJM market

data by scaling the annual demand curve using Eq. (4.1). Nuclear, coal, natural gas-fired,

hydro, wind, and solar are the six types of generators defined in the test case. The thermal

conversion rates for the nuclear, coal, and natural gas-fired used in this simulation were

based on [15]. The other three types of generation were non-thermal and had no

associated fuel cost. Though the simulation is performed using one-hour resolution, the

fuel cost data obtained from Energy Information Administration (EIA) [66] was the

averaged fuel cost price per month. Fuel cost of nuclear was almost constant, and 0.85

$/MMBtu was used [44]. The fuel cost of the two other major energy resources of the test

case, coal and natural gas, are presented in Table 3.1. The results of OPF are compared to

the marginal energy cost of PJM in Fig. 3.1. The year 2014 was a very cold winter for

North America, triggering a gas shortage for electricity, and resulted in a large spike in

electricity prices. This effect did not appear in the simulated results, as the gas prices only

varied by a factor of 1.7 throughout the year, compared to a factor of 100 in energy costs.

These results establish that the cost of electricity in a market is not just based on the fuel
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Figure 3.1. Comparison of the marginal cost of energy of PJM in 2014 (top-curve in blue)
to the average energy cost simulated on RTS-96 using a fuel-cost based generator cost
functions for a scaled PJM demand (bottom-curve in green).

cost model of the marginal generator. Existing methods and test cases do not adequately

represent real market costs, which may lead to large errors in analyzing the economic

impact of new power systems technologies as stated in research using existing test cases.

3.4 Generators in an Electricity Market

In this section, the role of the generator offer in an organized market is presented

in comparison with the fuel-cost method used prior to market restructuring. Generators

that wish to sell electricity need to participate in an electricity market in their region. The

cost of electricity is decided by the offer price of the marginal generator. Eligible

generating entities need to submit the size of the generator and offer price to the ISO,

along with their operational constraints (e.g., runtimes and economic/operational limits).

The offer price of each generator is submitted in incremental blocks of their generators

capacity ($/MW). An example of a generator’s offer from the PJM market is shown in Fig.

3.3 in Section 3.5. Apart from the incremental costs, the generators must also submit their
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start-up and reserve costs which have to be paid to the generators if they are turned on or

keep them in spinning reserve respectively.

The price of bulk power is determined in a day-ahead market under each ISO

across the U.S. The electricity markets perform unit commitment and economic dispatch

one day ahead of the supply day to schedule generation. The total cost of generation is

minimized based on generator offers and demand bids submitted by generating entities

and load-serving entities, respectively. Each generator submits a daily offer to the

electricity market containing the following information:

1. incremental offer costs (energy cost per segment output range $/MWh vs. MW),

2. upper and lower limits of units economic operation in MW,

3. start-up and no-load cost,

4. time operational limits such as minimum runtime and maximum number of starts in a

day,

5. maximum and minimum economic, operational limits.

This information is published publicly on the electricity market websites as per the FERC

ordered lag period of four months [67]. The number of offer blocks can range from one to

ten steps in increasing order of energy and cost. Some markets have a restriction on the

maximum offer price, for example PJM restricts their generators to bid a maximum of

1,000 $/MW in their day-ahead energy market [68]. Some large generators who cannot

shut down in a short notice, like nuclear plants, submit negative offer prices to ensure they

are fully-committed [60]. Each market has to maintain some percentage of generation as a
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reserve, and the market needs to pay the generator the spinning reserve cost mentioned in

the offer. The identity of the generators is protected so that this data is not used for market

malpractices, such as gaming the offer price to outbid other competitive generators. An

electricity market uses all the information mentioned above in the offers to construct an

optimization problem to minimize the total cost of electricity for the required demand,

resulting in hourly marginal energy prices for each location on their network.

3.5 Market-Based Synthetic Cost Curves

3.5.1 Classification of Generator Types

Due to cyber and physical security threats to the power system, the real grid data is

not available in the public domain for simulation purposes. For economic studies,

generator cost functions on available simulation test cases need to be similar to those in

real bulk-power markets. There are a number of test cases that provide realistic line limits

and line parameters (e.g., impedance, admittance) that physically represent real power

networks, but they lack realistic cost functions. In this chapter I describe a general

methodology to turn real generator market offer data into market-based generator cost

curves and assign them to power system test cases, expanded from our prior work in [69].

The resulting augmented test cases emulate real market marginal energy prices in

simulations.

The number of generators on real power systems is much higher than the number

of generators on most test cases. Generators with similar fuel types and comparable sizes

submit similar offers [70]. Even though the generation mix of a region is known, it is

difficult to recognize the type of generator (e.g., coal, nuclear, gas) by observing
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individual offers submitted to an electricity market as this data is not revealed (due to

security concerns). An unsupervised pattern recognition technique is required to obtain

groups of generators with similar bidding and operational attributes (i.e., generator types),

but may not be of the same fuel type. Applying a statistical pattern recognition (SPR)

technique on the market offer data creates clusters of generators that are statistically

similar, and these generator types can be used to serve as a synthetic representation of the

generation mix of the electricity market. The idea of this work is to interpolate cost

functions of each generator type, and apply these cost functions to the generators on the

test cases in the same ratio as in the synthetic generation mix.

The generator offer data published by an electricity market contains various

information about the generator. The number of dimensions (i.e., features) of the dataset is

crucial for an accurate SPR. Among the various information that is published in the offer

data of a generator, as described in the previous subsection, the following features were

selected for SPR:

1. weighted average offer price ($/MWh),

2. generator size (MW),

3. minimum runtime per day (h), and

4. ratio of minimum economic operation limit to the maximum operational limit.

Among the various features tested, these features gave consistent clusters for the

selected SPR described in Section 3.8. A generator’s offer can contain anywhere from one

to ten incremental blocks, with the number of blocks represented by Bi. For generator i,
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the selling price of energy is decided by generator output based on the offer curve defined

by offer blocks Wi = {wi1, ...,wiBi} (MW) versus the corresponding offer price

Ri = {ri1, ...,riBi} ($/MWh). The weighted average offer of unit i, Oi ($/MWh), is defined

by Eq. (3.9), where b is the block index. Along with the average price of generation,

another important feature for classifying generators is the size of the generating unit in

MW (obtained as the quantity of the last offer block), as it separates the generators into

clearly defined types (e.g., base versus peak) via the SPR. The minimum runtime is an

operational constraint specifying the minimum number of hours a generator has to be

committed in a day. The runtime information is used in classifying the generator types

based on system loading conditions such as base-load, peak-load, and intermediate

load [71]. The last feature of the dataset describes the ratio of minimum operation limit to

maximum operation limit to represent the flexibility of the generator (e.g., a base-load

generator will be inflexible with a ratio near 1, and a peak-load generator will be more

flexible with a higher ratio).

Oi =
∑

Bi
b=1 (ribwib)

∑
Bi
b=1 wib

(3.9)

3.6 Assigning Market Generators to Test Case Generators

Using the feature set described in the previous subsection and a suitable SPR, the

market generator offer dataset is classified into K clusters, which serves as statistical

generator types. To create similar classification in the power system test case, the test case

generators are also classified into K types, with each type having a similar percentage of
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generation capacity on the test case as the generator types from the market data. The

process of grouping the test case into K types is described in Algorithm (1). First, the

mean generation size of each cluster in the market data is calculated. The K market

clusters are arranged in descending order of their capacities, and their percent share of the

total generation is evaluated as y1, ...,yK , where y1 is the percent share of the cluster with

the largest mean generator size.

A similar procedure is then carried out with the test case generators, by arranging

the generators in descending order of their generation capacities. An index to point at a

test case generator is initialized with one. The test case generation capacity of generators

representing the generation type k is determined as ρk, which is yk% of the total

generation pmax as shown in Step 10. Each generator’s capacity (pi) is subtracted from the

generator type’s capacity until the total capacity is met with nk generators. This process

starts from the largest test case generator, n1 generators are chosen in descending order of

their generation capacity to make a test case generator type that contains y1 percent of the

total generation on the test case. This process is repeated to determine the K generator

types on the test case from the y2, ...,yK generation percent from the market clusters.

For illustrative purposes, let us consider a 6-bus, 11-generator system [72] of 240

MW capacity with market offer data that is clustered into K = 3, with y1 = 59.5%,

y2 = 19.2%, and y3 = 21.4% (from Table 3.2). The four largest test case generators (three

40 MW, and one 20 MW) representing 140 MW (i.e., 58.3% of the percent share of the

total test case generation) would be assigned to market generator type 1. The process

would continue, assigning three generators with 20 MW capacity representing 25% to

type 2, and assigning four generators (one with 20 MW, one with 10 MW, and two with 5
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MW) to type 3 to represent the remaining percentage. The following subsection describes

the process of assigning the market generator offers to the generator cost curves for each

test case generator.

Algorithm 1 Algorithm to assign test case generators to a generator type obtained from
SPR of market generator offer data.
Input: day-ahead market generator offer data and test case generator data

1: extract the required features from the day-ahead market generator offer data
2: perform SPR with an optimal number of clusters (K)
3: determine the mean size of generator capacity in each cluster
4: arrange clusters in descending order of mean generator capacity
5: determine the percent share of capacity of each cluster (y1, ...,yK)
6: arrange test case generators in descending order of their capacity
7: initialize the index for test case generator i = 1
8: for k = 1 to K do
9: initialize number of generators in type k (nk = 0)

10: determine the capacity of test case generation classified as type k (ρk = yk pmax)
11: while ρk ≥ 0 do
12: subtract the generator i from the required capacity ρk = ρk− pi
13: assign generator i to type k
14: increase the generator index i = i+1
15: increase the generator count nk = nk +1
16: end while
17: end for
Output: test case with statistical classification of generator types

3.7 Offer-based Generator Cost Curve Fitting

3.7.1 Overview

Each generator in the test case is assigned a market-based cost function derived

from the market generator offer data of the generator type it is assigned. OPF tools, like

MATPOWER [63], require generator costs represented as piece-wise linear or polynomial

functions. I investigate two techniques in this section of the chapter to design generator

costs from the clustered market offer data: (a) second-order polynomial and (b) piece-wise

linear functions, described in the following subsections.
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3.7.2 Polynomial Cost Curve

Most existing test cases are provided with quadratic cost functions ($/h), as they

were designed based on the quadratic heat rates of thermal units, i.e., Eq. (3.6). In this

section, I replace the existing fuel-based cost functions with equivalent market generator

offer-based cost functions ($/h). The offer-based cost function of generator i is obtained

by (i) multiplying the elements of the offer price, rb ∈Ri, with the corresponding offer

block, wb ∈Wi, to obtain the offer rate, and then (ii) fitting a second-order polynomial to

determine the coefficients αi, βi, and γi from Eq. (5.2). The resulting offer-based cost

functions are used to augment the test case generator cost functions.

For all the generators with offers having three or more offer blocks (i.e., Bi ≥ 3), a

quadratic equation is fit to the offer-rate curve using the least-squared error method. For

example, a generator offer with Bi = 7 is converted into an offer-rate curve as shown in

Fig. 3.2 in red, and a second-order polynomial is fit to the offer-rate curve using

least-squared error represented in the green curve. The resulting coefficients, αi = 0.031

$/MWh2, βi = 8.75 $/MWh, and γi = 510.93 $/h, would represent the offer-based cost

function for generator i when placed onto a test case. The offer has a minimum limit of

270 MW at 5068 $/h. The fitted quadratic curve is plotted between the generators

operation limits between 270 MW and 800 MW.

For offers with two blocks, a linear curve is fit between the two operational points

resulting in an αi = 0. Generators with offers of a single block have a γi equivalent to the

offer rate, with αi = βi = 0.

Algorithm 2 is used to augment the generator’s on the existing test cases with the
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Figure 3.2. Fitting a second-order polynomial as the generator market offer-based cost
function (green curve) using least-squared error onto an 800 MW generator’s offer-rate
curve with seven blocks (red curve).

market offer-based cost functions. The proposed approach starts by converting the

day-ahead market offer of each generator to a second-order polynomial market

offer-based cost function, as described above. The number of test case generators (nk) for

each generator type are known, and nk offer-based cost functions are randomly selected

from the corresponding cluster k. Each test case generator that represents a generator type

is assigned a market-based cost polynomial that is randomly chosen from the cluster it

represents. This approach ensures similar generation mix and costs in the test case as the

market it represents.

As shown in Fig. 3.1, the market LMP varies daily, because the generator offer

data changes daily (with hourly differences due to changing demand). This algorithm
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should be re-run for each day of interest to obtain accurate market simulations through

time. Some generator offers do not have a good fit for a second-order polynomial. Such

polynomials are eliminated from the dataset before starting the assignment process. The

following subsection discuses an approach to overcome this issue.

Algorithm 2 Algorithm to augment existing test cases with second-order polynomial mar-
ket offer-based cost functions.
Input: market-based classified test case, clustered generator market data

1: convert every offer into offer-rate curve
2: fit a second-order polynomial to each offer-rate curve
3: for k = 1 to K do
4: select nk cost functions randomly from cluster k
5: assign a cost function to every generator in the nk sized test case cluster
6: end for

Output: updated test case generator cost functions

3.7.3 Piecewise Linear Cost Curve

Not all generators in the bulk-power market submit offers that can be assigned a

quadratic cost curve with a good fit. Such offers that result in a poor fit may not accurately

represent the actual generator offer price. Most power system simulation software are

capable of performing OPF using piecewise linear cost functions. For this approach,

instead of fitting a second-order polynomial to the offer-rate curve, the market generator

offers are directly used by scaling the offer quantity to fit the test case generator size. With

this approach, the offer price of a generator remains the same on a test case as in the

market, even though the offer has characteristics that makes a second-order polynomial a

poor fit (i.e., a higher-order polynomial would be required for a good fit).

The process of developing the clusters for the piecewise linear approach is similar

to that of polynomial approach. Instead of developing offer-rate curves as in the previous
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approach, this approach takes the incremental offers Ri directly from the market data for

fitting a piecewise linear cost function for the test cases. To utilize these offers to develop

cost functions for test cases using Algorithm 3, the market offers must be extrapolated

from 0 MW to the generator’s maximum operational limit. The market offer is partitioned

into s equi-capacity blocks equal to 1/s of the generator’s maximum output. These

partitioned offer prices are used as offers at s equi-capacity blocks for the test case

generator. In this study, the lower limit of operation is neglected for all generators in the

test cases because MATPOWER OPF does not consider unit commitment, hence even in

the partition of the market offer the lower operational limit of a generator is ignored. The

cost function assignment process is similar to that of the polynomial approach, where the

test case generators are grouped into generator types and cost functions are chosen from

their respective market generator offer dataset clusters.

Fig. 3.3 illustrates an example of converting the same 800 MW generator market

offer shown in Fig. 3.2 to a 200 MW test case generator’s offer. The original offer

submitted to the electricity market on Jan. 28, 2014, had submitted an operational limit

between 270 MW and 800 MW. If this generator offer is selected to augment a 200 MW

test case generator with s = 5, the lower limit is higher than 1/s of the generator capacity,

the lower limit is extrapolated with the first submitted offer price of 18.7 $/MWh. The

market offer cost function shown in red in Fig. 3.3 is partitioned into five equi-capacity

blocks shown as the dashed blue curve. The five offer prices of the partioned curve is used

as the five offer blocks for the test case offer curve shown in green. Based on the software

that is used for the OPF, the offer blocks of the test case can be used as incremental step

offers or piecewise linear offers as shown as the green dashed lines linking each
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incremental block in Fig. 3.3.
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Figure 3.3. Developing generator offer curve for a 200 MW test case generator (shown in
green blocks) by partitioning an 800 MW generator offer submitted to the market (parti-
tioned curve in blue dashed-blocks and the offer curve submitted to the market in red). The
piecewise linear curve of the developed generator offer is shown in green dashed line.

Algorithm 3 Algorithm to augment existing test case with market-based piecewise linear
cost function.
Input: market-based classified test case, clustered generator market data

1: determine the s equi-capacity extrapolated market offer price intercepts for every gen-
erator

2: for k = 1 to K do
3: divide each test case generator capacity into s equi-capacity incremental offers
4: select nk piecewise market offer intercepts randomly from cluster k
5: assign the randomly selected incremental offer price to each test case generator
6: end for

Output: updated test case generator cost functions

3.8 Simulation Setup

3.8.1 Simulation Overview

The methodology of assigning market-based generator cost functions is tested

using the two different techniques to assign offer data to generator cost functions in eight
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standard test cases of varying size (six buses to 2,000 buses). The SPR from Section 3.5.1

was implemented using K-means clustering. Any unsupervised learning technique can be

used to implement Algorithm 1. The choice of SPR is not explored in this work, as the

main contribution of the work is the design of the methodology to implement realistic

market behavior on power system test cases. Any electricity market that publishes the

generator offer data can be used for developing the cost functions. At the point of writing

this dissertation, I am aware of at least two markets that publish the generator offer data

publicly (a) PJM [67], and (b) ISO-NE [73]. I chose PJM generator offer data to develop

generator cost functions for the eight test cases because of the nature of wide range of data

availability that would support other projects in this dissertation. Marginal energy prices

obtained from OPF on these test cases are statistically compared to the real PJM market

marginal energy price. Negative price offers were eliminated as these small number of

offers (∼1%) did not impact the marginal cost of energy. The test cases were assigned

scaled PJM hourly demand to each test case for the years 2014–2016. This section will

describe in detail the K-means clustering method (including our choice of K), statistics of

each cluster formed by K-means on PJM generator offer data, PJM market demand and

generation statistics, and an introduction to the power system test cases used in this study.

3.8.2 K-means Clustering

In this work, I chose to implement K-means as an initial baseline implementation

of the SPR. K-means is a commonly applied unsupervised learning technique for pattern

recognition that is computationally efficient and produces well-separated clusters for

well-defined data [74]. The “K” value for the market generator-offer data is chosen such
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that the clusters produced have maximum separation and are well-defined. Well-defined

clusters are clusters that have a maximum distance between cluster centroids, and least

distance between each element within a cluster. I use the Calinski-Harabasz criterion

(CHC) to determine the optimal number of clusters K for our offer dataset [75]. I chose

CHC for this problem as CHC provides a K that gives maximum separation between

cluster groups so that the generator types can be properly identified. With N observations

(i.e., generator offers) and K clusters, CHC can be determined by Eq. (3.10). CHC is a

maximization criterion that is directly proportional to the inter-cluster variance, defined in

Eq. (3.11), and is inversely proportional to the intra-cluster variance, as defined in

Eq. (3.12). For cluster k, let nk be the number of observations, mk be the centroid, and x be

a multi-dimension data-point. Additionally, let m be the centroid of the dataset.

CHCK =
SSB

SSW
× (N−K)

(K−1)
(3.10)

SSB =
K

∑
k=1

nk‖mk−m‖2 (3.11)

SSW =
K

∑
k=1

∑
x∈k
‖x−mk‖2 (3.12)

The CHC was determined for the electricity market data for each day of the year

for the years 2014–2016 using the four-feature dataset. Fig. 3.4 is the histogram for the K

value corresponding to the maximum CHC for each day’s PJM generators offer data for

the year 2014. The optimal number of clusters based on CHC was found to be three for

358 days out of 365 for the year 2014. Similar observations were found for the years 2015
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and 2016, where all 365 daily datasets had maximum CHC with 3 clusters. For that

reason, I use K = 3 for all further simulations.
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Figure 3.4. Histogram of the optimal number of clusters (K) for the PJM generator’s offer
data for the year 2014 using Calinski-Harabasz criterion.

After clusters of generator types were determined via K-means, the generator types

were labeled based on the analysis of each feature of the cluster data using power system

domain knowledge. Base-load units, intermediate-load units, and peak-load units are the

labels given to the three clusters. A base-load generator is defined as a generator that

operates 24 hours per day, intermediate units are those that meet the daily peaks (operating

a few hours daily), and peak-load generators are operated only during annual peaks (a few

hours annually) [71]. Similar minimum runtimes of generator types can be observed in

Fig. 3.5. In this cumulative density plot of PJM generator offer data on Jan. 28, 2014, the
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cluster that has more than 90% of the generators with 24 hour minimum runtime has been

labeled as the base-load units, and the generators with lower minimum run-times as

peak-load and intermediate based on their cluster average weighted offer price.

Fig. 3.6 shows the cluster of the generators based on the offer size and offer cost of

the generator for the same day in January, as those are the features that are used to

augment the test cases. The generators in each cluster appear to be overlapping as the data

contains more than two plotted dimensions (i.e., four dimensions from the four features

selected for the SPR). Table 3.2 presents the market offer data statistics based on the

clusters shown in Fig. 3.6. The mean generator size of the base-load units is the largest,

and the peak-load units are the smallest. The generation share of these three clusters

would serve as the share of generators in test cases for any simulation based on this day

(i.e., y1,y2,y3).

Table 3.2. K-means cluster summary for PJM bid offer data on Jan. 28, 2014.

unit type generation
share (%)

mean offer
quantity (MW)

mean offer price
($/MWh)

peak-load 21.4 83.1 687.9
intermediate 19.2 122.9 177.6

base-load 59.5 311.8 180.8

Jan. 28, 2014, was the peak price day of the year with the marginal energy cost in

the PJM region reaching 965 $/MWh at 16:00. The generator distribution on July 6, 2014,

which was the peak demand day of the year of 139,571 MW, is presented in Fig. 3.7.

Comparing the distributions of the two extreme days show that the offer price of the

generators does not depend only on the demand of the system. On a given day, the price of

electricity follows the demand as the offer price of a generator is fixed for that day, but can
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Figure 3.5. Cumulative density function of the minimum runtime of generators in each
cluster for the market offer data of PJM on Jan. 28, 2014.

change throughout the year as fuel prices and other expenses keep fluctuating. Table 3.3

shows the offer data statistics of July 6, 2014, where the share of each cluster does not

change by a large margin, but the mean offer price is approximately six times less than

that of Jan. 28. The lower generator offer price of July 6 would result in lower electricity

prices, despite greater demand than that of Jan. 28, which would not be apparent in

existing test case cost functions.

Table 3.3. K-means cluster summary for PJM bid offer data on July 6, 2014.

unit type generation
share (%)

mean offer
quantity (MW)

mean offer price
($/MWh)

peak-load 18.3 60.0 213.6
intermediate 23.3 156.8 103.3

base-load 58.4 359.5 37.2
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Figure 3.6. Distribution of all the generators by weighted average offer price to their offer
size, clustered into three partitions using K-means for the generators participating in the
PJM market on Jan. 28, 2014.

3.8.3 Principal Components Analysis Based Clustering

A separate clustered generator data-set is developed for each day for the entire

time-series intended for analysis. Generator cost functions are developed by polynomial

curve fitting from the market offer data which is used as cost functions for the test cases.

From the knowledge of power system I know that base-load generators are usually large

efficient generators and peak-load are usually small fast ramping generators, this can be

also visualized from the Fig. 3.8. The cost functions for the test cases are also assigned in

such a way that the largest generators have the curves from the base-load cluster and in

descending order through the intermediate units to the smallest units assigned from

peak-load cluster. As the number of generators in a test case are much fewer than than the
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Figure 3.7. Distribution of all the generators by weighted average offer price to their offer
size clustered into three partitions using K-means for the generators participating in the
PJM market on peak demand day of the year, July 6, 2014.

market generators cluster, cost functions are randomly sampled from the data and assigned

to test case generators. Each cluster is samples in such a way that the test case also has

similar percentage share of each cluster group.

Under-sampling issues can arise when randomly selecting few generator offers

from a cluster with large number of generators. For example, in the peak-load cluster as

shown Fig. 3.8 the generators spread from a small generator with its capacity in few 10’s

of MW offered at nearly 900$/MWh to large 700 MW generators with offer price lower

than the base-load generators. Because the identity of all these generators are masked,

there is no technical knowledge to filter out any outliers. When a cost function is

randomly sampled from these clusters the probability of picking up any generator within
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Figure 3.8. Distribution of all the PJM generators participating on July 25, 2016 day-
ahead market along the weighted average offer price and offer capacity, clustered into three
partitions using k-Means.

the cluster is equal, which sometimes can reduce the accuracy of this method.

To reduce the under-sampling issue the generator cost functions must be selected

based on the density of the generators in a cluster [76]. One of the well established

methods of estimating the maximum likelihood or density of a multi-dimensional data is

by principal component analysis (PCA) [77]. PCA is a dimensionality reduction technique

that projects the data on axes where the variance under projection is maximal. Using PCA

the multi-dimensional generator offer data was reduced to two dimensions along the major

axes of principal components. A bi-variate histogram is determined for each of the cluster

along the two principal component (PC) axes with the number of bins determined by the

Scott formula presented in [78]. Fig. 3.9 represents the probability distribution of the

peak-load generators of July 25, 2016 along the PC1 and PC2 axes. Because the PCA is
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just transformation and rotation of data to maximize the variance along an axis, the

original information of the data can be traced back to extract the required information.

Figure 3.9. Normalized PCA of the peak load cluster along the PC1 and PC2 on the reght,
and two dimensional histogram along the two major principal components of the peak-load
generators cluster of PJM on July 25, 2016 on the left. The histogram represents the density
based on number of generators in each bin.

The generator offers are sampled based on the probability of the bi-variate

distribution of generators in each cluster. This process will reduce the chance of outlier

generators being selected for the test cases. This density-based selection will increase the

chances of a test case generator being classified and perform similar to other test case

generators of the cluster. For example, I would expect a large test case generator to behave

as base load unit, and the cost function of such a unit must be reflect the characteristics of

a base-load unit consistently over the time-series. This consistency of being assigned the

cost functions from the most likelihood region of a cluster is important to this work as a

particular test case generator will be associated with the same fuel-generator type over the

time-series.
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3.8.4 PJM Market

This chapter aims to compare the marginal energy prices from the OPF results of

the augmented test cases to the marginal energy prices in the actual PJM electricity market

annually with a one hour resolution from 2014–2016. For a fair comparison, the test cases

and the PJM market are statistically matched regarding demand and generation, described

in Table 3.4. The average demand is calculated as the mean hourly demand in the calendar

year. The peak demand is the largest hourly demand during the calendar year, and the

generation capacity is the sum of the maximum operating limits of the generator offers on

that particular day. The market demand factor (MDF) is obtained by the ratio of peak

annual demand of the PJM market (Dmax) to the generation capacity (PDmax
), given in

Eq.( 3.13). This ratio gives the maximum percentage of generation utilized during that

year. This information is used to scale the PJM demand curve to match the test cases. For

this study, MDF= 80% was chosen for each of the three years.

MDF =
Dmax

PDmax (3.13)

Table 3.4. PJM annual demand and generation summary.

year
average
demand
(MW)

peak demand
(MW)

generation
capacity (MW)

MDF
(%)

2014 89,317 139,571 176,126 79
2015 87,712 136,510 181,674 75
2016 87,793 142,928 178,064 80
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3.8.5 Power System Test Cases for Simulation

Eight power systems test cases ranging from six to 2,000 buses were tested using

the two proposed offer-based generator cost curve fitting techniques. The eight test cases

used are Roy Billinton test case (RBTS89) [72], IEEE 14-bus system (IEEE14) [79],

IEEE Reliability test case 1979 (RTS79) [14], IEEE 39-bus New England test case

(NE-93) [80], IEEE Reliability test case 1996 (RTS96) [21], ACTIVSg200 Synthetic

Illinois 200-bus power system model (IL200), ACTIVSg500 Synthetic South Carolina

500-bus power system model (SC500), and ACTIVSg2000 Synthetic Texas 2000-bus

power system model (TX2000) [81]. Table 3.5 presents the details of the size and

capacities of each test case considered for this study. The test case demand factor (TCDF)

is the ratio of the sum of all test case loads to the sum of the maximum generation of the

test case generators. To match the PJM market MDF of 80%, the default loads on the test

case were scaled using the scaling factor ψ , defined in Eq. (3.14), where p′ is the total

generation capacity of the test case, and d′ is the default load on the test case.

Due to OPF convergence issues during some peak demand and demand valley

times when using the scaled PJM load on some of the test cases, the scaling factor ψ was

adjusted. In Table 3.5, the rows marked with a ‘*’ have been adjusted to ensure

convergence. The exact methodology for determining ψ for these test cases is described in

the following subsections. The minimum generation limit of all generators in the

RTS79/96, IL200, SC500, and TX2000 test case were set to 0 MW, as described in

Section 3.7.3 (all other test cases have default minimum limits of 0 MW). To maintain

load model accuracy, the same scaling factor used for active power as described in
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Eq. (3.14) has been used to scale the reactive power demand at each bus.

ψ =
p′

d′
MDF =

MDF
TCDF

(3.14)

Table 3.5. Power system test cases with their default setup and their scaling
factors considered for this simulation.

test cases number of
buses

installed
capacity
(MW)

default
load (MW)

TCDF
(%) ψ

RBTS89 6 240 185 77 1.04
IEEE14 14 772 259 34 2.20∗

RTS79 24 3,405 2,850 84 0.96
NE39 39 7,367 6,254 84 0.88∗

RTS96 73 10,215 8,868 84 0.96
IL200 200 3,379 1,475 44 1.60∗

SC500 500 12,189 7,750 64 1.25
TX2000 2000 94,791 67,109 71 1.10∗

3.8.6 RBTS89

The RBTS89 test case is a small system with relatively high line flow limits that

cannot be overloaded; this test case converges for all loading conditions. The largest

generator of the RBTS89 system is 40 MW, which is smaller than the average peak-load

generator of the PJM market. The cost function for a peak-load generator of the test case

is developed based on PJM generator offers that are on an average ten times larger. The

relative difference in size of generators creates cost functions that have steep variation due

to the reduced size of the generator when compared to the market. There are eleven

generators in this test case which represent each of the three generator types. Due to a

small number of generators, a small variation in demand can sometimes create a large

jump in price, as the chance of the marginal generator changing from one type to another
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is high.

3.8.7 IEEE test cases

The IEEE14 test case has no line limits, and the only operational constraint is the

generator maximum limits and voltage limits of the buses. This test case has only five

generators varying between 100 MW and 334 MW. This small mix of generators and

results in large step changes in hourly price over annual simulations because the smallest

generator of the test case is twice as the mean generator size of the peak-load generator of

the PJM market. With just five generators, it is difficult to accurately group generators to

resemble similar generation share as the market clusters. Even though the test case can

converge for a scaling factor that would result in 80% loading, the resulting marginal

prices are very high as the small changes in load (inter-day demand changes) does not

result in marginal generator choice.

This is similar to the NE39 test case, where there are ten generators varying

between 508 MW and 1100 MW. The smallest generator on the test case is at least fifteen

times larger than the average peak-load generator of the PJM market. Just like the 14-bus

system, an accurate percentage share of clusters cannot be formed. These two test cases

represent a part of the power system which does not need to have the entire diversity of

generation profile. The scaling factor on this test case has been lowered for the same

reason as the IEEE14, where a higher scaling factor would result in much higher median

marginal energy price.
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3.8.8 IEEE Reliability test case

The RTS79 test case has realistic line limits, voltage limits, and generation limits.

This test case has 32 generators varying between 12 MW and 400 MW. Even though this

test case was proposed for performing reliability studies, it is still a good test case to

conduct economic studies because of the realistic generation mix and line limits. The

RTS96 test case is comprised of three RTS79 systems, interconnected by five lines,

making a total of 96 generators and 73 buses. The generation and demand mix on each of

the three subsystems of the RTS96 test case remains unchanged from RTS79.

3.8.9 Synthetic test cases

Three synthetic test cases (IL200, SC500, and TX2000) were developed using

statistical techniques [15]. They are designed to represent the electrical grid of a

geographical region by capacity. The IL200 test case represents a hypothetical grid in

southern Illinois, U.S., with 200 buses and 49 generators that range from 4 MW to 569

MW. This test case has a default load of 44% of its maximum generation, which was

scaled to 70% using ψ = 1.6. This value is 10% less than would be calculated from

Eq. (3.14), as beyond that percentage the upper voltage limits on a few buses would be

violated. On some buses, there is little-to-no load which causes a voltage rise as the

generation increases to meet the load on other buses. The SC500 test case represents a

region of South Carolina, U.S., with 500 buses and 90 generators ranging between 1 MW

and 772 MW. This test case was scaled by a factor of ψ = 1.25, which is equal to the

value calculated from Eq. (3.14), because this case converges for all loading conditions.

The TX2000 test case is a synthetic network that covers the entire Texas region with 2000
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buses and 544 generators ranging between 1 MW to 1354 MW, which is very close to the

original PJM market. Even though the upper limit of scaling is achievable, this was the

only system that did not converge for any load that was scaled 84% below its default load.

The simulation for this test case was set up such that the loads on this test case are scaled

so that the minimum demand on the system is 84% of the default load of the test case, and

the peak load is 110% of the default load. The scaling for the TX2000 is achieved using

Eq. (3.15), to ensure convergence. With this scaling the ratio of the valley load to the peak

load over the the annual simulation would be 77% (i.e., 0.84/1.1). The ratio of minimum

demand to the maximum demand on PJM network for the year 2014 was 39%.

d j(t) = ψ×d j×
(1.1−0.84)× (Dmkt(t)−Dmin

mkt)

Dmax
mkt −Dmin

mkt
+0.84 (3.15)

3.9 Simulation and Results

3.9.1 Simulation Overview

The capability of the proposed approaches is illustrated by comparing the energy

prices from the OPF with the real PJM market marginal energy price. Simulations were

performed on all eight test cases with the scaled PJM demand using Eq. (4.1) with the

scaling factor ψ as mentioned in Table 3.5. All simulations were carried out using

MATPOWER 6.0 in MATLAB (R2017a)3. While the simulation and analysis were

conducted for 2014–2016, only the results from 2014 are presented and analyzed in detail

3All data from this work has been made publicly available in a GitHub repository with an open source
license at https://goo.gl/rSGeBX
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for brevity. The energy prices of 2014 are interesting as that year witnessed high variation

in energy prices across the year due to its very cold winter temperatures in North America

and unavailability of natural-gas for electricity.

3.9.2 OPF Simulation

The market offer-based polynomial and piecewise linear approach simulations

were performed using the generator cost functions derived using the proposed methods.

The cost functions for the test cases were updated in one-day resolution. The same load

curve was used for simulating all three setups (default, polynomial, and piecewise linear)

derived using Eq. (4.1) for each test case, except the TX2000 which uses Eq. (3.15). All

the marginal energy prices presented in the results are the weighted average energy price

using Eq. (3.8).

To compare the hourly energy prices over the one-year time-series simulations

with the PJM marginal energy prices, both visual and statistical techniques were

investigated. One such statistical method is to compare the distribution of the hourly

marginal energy prices from the augmented test case OPF with that of PJM over the same

year. In this case, the distribution is represented as violin plots, as shown in Fig. 3.10.

Violin plots are similar to boxplots, but the probability density of the values can be

observed, represented by the width of the violin plot. The dashed black lines in each of the

violin plots represent the three quartiles of the distribution with the middle line

representing the median energy price. The two ends of the violin plot represent the

extremes of the observed data. In Fig. 3.10 the first violin plot is the energy price

distribution of PJM market during 2014 represented in the red plot. The distribution of
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marginal energy price of each test case using the polynomial approach is represented in

the left half of each violin plot in blue, and on the right in green using the piecewise linear

approach. The distribution of marginal energy price of each test case using the two

proposed techniques is compared with the PJM market marginal energy distribution.

Though the cost functions for all the test cases were drawn from the same pool of cluster

data, the performance of each test case is different, as the physical structure and generator

configuration are different.

From the Fig. 3.10 I can observe that the test cases having realistic line limits, no

convergence issues, realistic generation profile in terms of numbers and sizes (i.e, both the

RTS system, and SC500) produced energy price distribution similar to that of the PJM

market. Though the TX2000 test case has all the characteristics of a real power system,

due to its lower bound convergence issues the energy prices have a higher median.

However, the TX2000 price distribution shape closely resembles the PJM market

distribution. The IL200 has the least matching distribution due to the upper limit

convergence issues.

The marginal energy prices produced by OPF using the two approaches have

comparable distributions. Regarding the density and mean of the marginal electricity

price, both the RTS cases and the SC500 test case are similar to the PJM market. One

reason these test cases perform well is the availability of various sized generators similar

to that of the real market. The distribution of energy prices from the simulation of

RBTS89, IEEE14, and NE39 are similar, and have a narrow violin plot when compared to

the PJM market. A narrow violin plot represents less density of observations around the

mean, indicating more variation in marginal energy costs. The IL200 test case produced
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Figure 3.10. Violin plots representing the distribution of marginal energy price of the PJM
market for the year 2014 in red and by simulation on test cases using polynomial approach
presented in blue on the left half, and using the piecewise linear approach presented in
green on the right side of the violin plot.

the lowest mean, as the upper scaling of this test case was reduced due to the voltage

constraint convergence issues.

Another statistical metric to compare the performance of the proposed technique is

the goodness of fit (GOF), given in Eq. (3.16), where ΛPJM is the marginal energy cost of

the PJM market, and Λ is the marginal cost resulting from the augmented test case. GOF

provides a metric between -∞ to 1, where 1 is an exact fit and -∞ indicates a very poor fit.

GOF = 1− ‖ΛPJM−Λ‖
‖ΛPJM−Λmean

PJM ‖
(3.16)

Table 3.6 presents the GOF, and the distribution of marginal prices produced by
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each test case using the two proposed approaches compared to the original PJM market

for 2014. The table compares the OPF simulation results using the mean and standard

deviation of marginal energy cost for one year with a one-hour resolution. The first row

shows the results from one year OPF using the single set of default cost functions that are

provided with the test cases, except for results of SC500 and TX2000 which are simulated

using the heat rates of the generators and monthly fuel costs (as described in Section 3.3.

The distribution of the SC500 marginal price for default cost curve is derived from the

plot presented in Fig. 3.1.

The mean and standard deviation of the SC500 and the two RTS systems are

closest to the real PJM distribution. Even though the TX2000 system has physical

dimensions comparable to the real system, due to the simulation limitations in scaling the

load, a much higher mean is observed. The simulation results using the scaled 2015, and

2016 showed similar trends where the RTS and SC500 had the best marginal energy price

distribution and GOF among the other test cases. The SC500 had obtained a GOF of 0.54

using the polynomial approach for the year 2015 and the least performed test case was

IL200. The year 2016 had low fluctuation in marginal price, and a low peak, because of

this the TX2000 could only achieve a 0.04 GOF for the year 2016 as the median price

from the simulation was higher than the first quartile price of the PJM market.

None of the results from simulations using default cost functions could generate a

positive GOF for the year 2014, but managed to get a positive GOF of 0.11 for SC500 and

0.04 for RTS96 using 2016 demand. The RTS79 using the piecewise linear cost functions

produced the closest marginal price distribution in terms of mean and standard deviation

to the PJM marginal price for 2014. The GOF of RTS79 is also the highest among all the
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Table 3.6. Statistical comparison of marginal energy price by simulation with PJM market.

cost
function

parame-
ter

PJM
RBTS89 RTS79 RTS96 IL200 SC500 TX2000

default

mean
$/MWh

49.2 0.7
17.31

24.4
18.51

37.8
158.42

SD 51.9 0.07 7.7 13.7 2.62 43.3 6

GoF n/a -1084 -6.5 -2.87
-

21.8
-0.13 -18

market-poly

mean
$/MWh

n/a 65.5 55.6 64.7 46.3
57.66

87.2

SD n/a 71.3 43.7 47.9
32.66 46.32

57.2

GoF n/a 0.36 0.36 0.36 0.15 0.44 0.16

market-pwl

mean
$/MWh

n/a 66.6
49.76

48.3
45.85

53.5 81.5

SD n/a 71.2
43.77

40.3 35 38.1 61.4

GoF n/a 0.39 0.45 0.41 0.14 0.15 0.24

test cases with 0.45, closely followed by polynomial cost function based SC500 with 0.44.

The highest GOF of 0.49 was obtained among all the simulations for RTS96 during 2015

with market-based polynomial cost functions. The IL200 test case did not perform as well

as the other test cases as the scaling of this particular system was 10% lower than that of

the system that is being compared. Similarly, the case with TX2000 which suffers from

lower scaling produced higher rate when compared to other test cases. It is to be noted

that these values of GOF are far from the best fit value, because the comparison is between

OPF results from a test case that is physically different from the real market in terms of

size and complexity. Secondly, the results presented in this chapter are marginal energy

prices of test cases from OPF, which only resembles the economic dispatch problem of an

electricity market, but not the unit commitment. Considering these two approximations,

the positive GOF obtained are significant improvements when compared to the existing
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default test case results.

Fig. 3.11 presents the weighted average marginal energy cost from OPF simulation

on RTS96 (green) using the market-based polynomial generator cost function for the

scaled PJM demand of 2014. The marginal energy cost has been compared to the marginal

energy of PJM during the year 2014. The hours during winter (January-March) show a

higher marginal energy cost similar to that of the market. The hours during the summer

(June-August), where the system demand is higher compared to other seasons of the year,

the price was relatively low. When the marginal energy cost time-series of the proposed

technique is compared to the fuel-cost based approach in Fig. 3.1, the time-series in the

proposed technique could represent most of the valleys and peaks similar to that of the

real PJM market.

Figure 3.11. Annual marginal energy price of PJM for 2014 with one-hour resolution
(top blue curve) and the simulated marginal energy price using the market offer-based
polynomial cost functions on the RTS-96 test case with scaled PJM demand (bottom green
curve).
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3.9.3 Monte Carlo Simulation

There is randomness in the selection process of cost functions from the PJM

market cluster data to generators on the test cases, as the number of generators in the PJM

system are much greater than the number of generators on any test case (i.e., 853 in PJM,

versus 544 in TX2000, the largest test case available in this study). The proposed

algorithm is a viable solution to create test case cost functions only if its solution is stable

in the random selection of generators. Monte Carlo simulation was performed to show the

consistency and stability of the proposed technique. OPF was performed for one day with

a one-hour resolution for 100 Monte Carlo trials. Each trial, the selection of generators to

the test case from the PJM market was re-sampled. Though the Monte Carlo simulation

was performed on all test cases for both curve-fitting techniques, only results of RTS79,

RTS96, and SC500 using market-based polynomial curves were presented for brevity, as

they had the highest GOF. The other test cases showed similar stability.

Fig. 3.12 compares the stability of the three test cases versus the PJM market using

bootstrap plots of the weighted average marginal cost. Each thin colored curve represents

one Monte Carlo trial of the test case, with the dark curve representing the mean. Two

days were chosen for the Monte Carlo simulation, as they are the two extreme priced days

(the peak and the valley) of the year.

Fig. 3.12a presents the Monte Carlo simulation of the peak priced day of the year

(Jan. 28, 2014). The SC500 test case performed the best among the three for this day, and

could reproduce the peak hour of the day at 8:00. Both the peak and valley of that day in

the simulation performed on the test cases appear at the same hour they occur on the PJM
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(a)

(b)

Figure 3.12. Monte Carlo simulation of OPF with one-hour resolution of RTS79, RTS96,
and SC500 for 100 trials. (a) is the simulation for the peak price day of the year in PJM
Jan. 28, 2014, and (b) is for the least price day of the year June 18, 2014.
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system for most of the trails. The valley on the simulations performed on RTS96 has a one

hour offset at 15:00, instead of at 16:00 for the actual market valley. Fig. 3.12b represents

the Monte Carlo simulation results for the lowest price day of the year, June 18, 2014. All

three systems performed equally, but none could reproduce the valley effect of PJM, even

on a single trial. The inability of the proposed technique to match the valley can be

attributed to the approximation of the test case simulations explained previously in

Section 3.7.3. All test cases could reproduce the peak of the day and the sudden change in

slope between 20:00 and 22:00. Simulations are expected to reflect such variations, as

services like demand response and battery charging strategies are most likely to respond to

similar pricing signals.

3.10 Conclusions

In this chapter a general methodology for augmenting power system test cases

with generator cost functions that represent real electricity market energy prices was

presented. This technique is compared to the current state-of-the-art fuel-cost and

heat-rate based generator cost functions. Eight test cases were tested using the two

proposed techniques by comparing their OPF results with the real PJM market day-ahead

marginal energy prices. The OPF was executed using a scaled annual demand curve of

PJM with one-hour resolution and compared to the marginal energy cost of the PJM

market using a goodness of fit metric. Simulation with our proposed technique on all the

test cases resulted in better energy price estimates than the default cost functions of the

system. A Monte Carlo simulation was presented to show the stability of the proposed

techniques, even with the randomness in the algorithms. The proposed technique is
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intended to be used to augment test cases based on ISO-based market which publish their

bid/offer data. This technique should not be used for economic analysis of other market

models and on non-deregulated power systems.

Even though all test cases produced energy price closer to the realistic costs than

their results using the default cost functions, not all test cases performed the same when

compared to the real market price. The SC500 and both the RTS test cases had their

marginal energy price close to PJM marginal energy price. These test cases performed

better when compared to the other test cases as the SC500 and both the RTS test cases as

they had no scaling issues and had a wide range of generator sizes (i.e., range of

generators from a large units in 100’s of MW to small units in range of 10 MW) as they

closely represent a real power system generation profile of a large area. Such test case

achieved a goodness of fit as high as 0.5, and the test cases that had generation profile that

only represent a part of a power system produced lower goodness of fit. The proposed

technique performed better than the existing cost functions and also the state-of-the-art

synthetic test cases that use generator heat models and fuel costs to develop the cost

functions. These test cases would allow the research community to perform more accurate

economical analysis of CPPS with more realistic energy prices.

To produce more accurate energy prices, the proposed augmented test cases can be

used along with unit commitment (UC). The formulation of the UC problem does not

change, but the OPF following the UC using the proposed market-based generator cost

functions will result in a realistic energy prices when compared to the fuel cost-based

generator cost functions. There are other statistical pattern recognition techniques that

may result in different clusters and different distributions. In this chapter, I only used one
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such unsupervised technique, as the main contribution of this work is to present the

method of using real market data to augment test cases for economic studies. Exploring

various pattern recognition technique for this problem is not in the scope of this chapter,

but could be explored in future studies. As the proposed technique has resulted in realistic

energy prices in OPF simulation than the default cost functions on all eight test cases, it is

fair to conclude this technique can be applied to any other power system test case for

economic studies. Economic studies performed on such augmented test cases would result

in realistic energy costs, and conclusions drawn from such studies would better represent

the behavior of new technologies on the real-world power system.
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CHAPTER 4 Data Driven Approach to Estimate Emissions from Market-Based Power

System Test Cases

4.1 Introduction

There is a growing interest in power systems research to reduce the emissions as a

part of their results in the recent times [16]–[18]. These works are a part of the smart-grids

initiative to make the power system more sustainable [26]. There has been active research

to reduce the harmful emissions from the electric power industry, one of such works

presents a novel technique to optimize demand based on pollutant emissions [27]. There

have been published research to estimate and reduce emissions by various optimization

techniques performed on open source test cases but have used the generation profile on

those test cases which cannot be validated with a real network [28]–[30].

To realistically evaluate the impact of new generation or demand optimizing

techniques on emissions, the test cases used for simulations should represent a real power

systems. In this work a technique to further augment the test cases from the Chapter 4.2 is

proposed by adding fuel-turbine type and thermal curves to the test case generators to

represent a real power system. There was no fuel-generator data added to the test cases

because the objective of the work in the Chapter 3 was to develop test case cost functions

based on a market offer data. In this chapter a technique is presented to further augment

the test case with fuel-turbine data of a real region of a power system to the augmented

test case. The major contributions of this work are:

1. a data driven technique to develop time-series fuel mix data for test cases to

represent the generation profile of a real system,
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2. an open source test cases that have 19 different combinations of fuel, and turbine

data on practically any size test system,

3. a method to develop generator thermal efficiency data for test cases based on real

generators thermal efficiency to accurately estimate GHG and AP emissions.

To validate the effectiveness of the proposed technique, hourly fuel mix is

compared to the real world fuel mix as well as the GHG, and AP emissions from the

simulations are compared to the GHG and AP emissions of a real electric interconnection.

The rest of the chapter is organized as follows: The following section presents a

brief discussion on the state-of-art of the test cases and discusses the limitations of these

test cases to perform accurate emission studies. The Section 4.3 provides a brief

discussion on emissions estimation in power systems and the limitations from the existing

test cases. The need for using an augmented test cases to represent a deregulated power

system along with the proposed technique to augment existing test cases is presented in

Section 4.4. The simulation setup and the data sources for developing the augmented test

case in presented in Section 4.5. The results are analyzed and discussed Section 4.6

followed by the conclusions in Section 5.7 .

4.2 Emission Studies on State-of-art Test Case

To establish a reference state-of-art test case for this study, I modified a moderately

large test case (RTS-96) to represent the PJM interconnection. Based on the Fig. 1.1 it is

clear that the generation profile has changed by a large margin from 2010 to the 2018. To

match the generation profile of PJM, the test case generators have been updated with the

fuel types to reflect the installed capacity of 2016 as described in the Table. 4.1 [82]. The
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percentage of the PJM capacity does not sum up to 100% because the renewable

generation capacity was not presented. Since the renewable energy is non-dispatchable the

percentage of renewable was directly subtracted from the hourly load. Rest of the

generator characteristics such as the prime mover, fuel type, heat rates along with emission

information were derived from the FERC RTO UC test system generator information.

Table 4.1. Modified generation capacity of the RTS-96 test case to represent the fuel mix
of PJM interconnection in 2016.

energy source 2016 PJM summer ICAP
(%) test case capacity (%)

coal 36.6 37.1
gas 35.5 34.5

hydro 4.9 5.2
nuclear 18.2 19.2

oil 3.7 3.5
multi-fuel 0.4 0.5

To establish the performance of the test case, OPF was performed on the test case

with scaled PJM demand of 2016 to determine the annual fuel mix by energy based on the

test case. To simulate OPF at hour t, the load d j(t) on any bus j is obtained using

Eq. (4.1), where d′j is the default demand on bus j provided in the test case, Dmkt(t) is the

total demand on the real PJM network, and Dmax
mkt is the annual peak load of PJM for the

year in consideration (i.e., 2016 for this simulation). A scaling factor, ψ , is used to scale

the default load such that the ratio of peak demand to installed generation capacity is

similar to that of the real market. For this simulation, the scaling factor was set at

ψ = 0.96 which would make the ratio of peak demand to the installed capacity 80%.
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d j(t) = ψd′j
Dmkt(t)
Dmax

mkt
, ∀ j = 1, ...,s (4.1)

Figure 4.1. Stack plots comparing hourly generator output per fuel type for 2016 of PJM
interconnection (top) with the state-of-art modified RTS-96 test case (bottom).

OPF was evaluated for every hour for the year 2016 and the dispatch of each

fuel-type was observed for all the 8784 hours of the year 2016 and presented as stack plot

in Fig. 4.1. Since the same cost function was used for all the days of the year, the dispatch

of the generators did not change throughout the year. For example, when the nuclear

generation between the PJM and simulation is compared, the output of the nuclear plant

remains constant in the simulation as the cost function of a nuclear plant is the least. This

mismatch in dispatch of generators can be observed in the annual energy mix pie charts in

Fig. 4.2. The nuclear units in the test case resulted in a 100% capacity factor, when
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compared to the real system it is close to 91%. It is clear that even though the installed

capacity matches the real system, the dispatch does not behave like the real-system.

Figure 4.2. Comparing annual energy percentages per fuel type from PJM on the left pie
chart to the simulated annual energy produced per fuel on the state-of-art modified RTS-96
test case with PJM 2016 ICAP on the right pie chart.

4.3 Emission Assessment in Power Systems

Majority of the generation in the U.S. power network are based on converting heat

energy to electricity (thermal units) [1]. Heat is generated by burning fossil fuels, and this

heat is converted into kinetic energy to drive the turbine-generator shaft. In the process of

generating electricity during the combustion of fossil fuels, GHG along AP are emitted.

Based on the thermal efficiency of the turbine-generator, the quantity of heat can be

determined to generate an unit of electricity. To estimate the quantity of GHG and other

AP emitted the following data is required:

1. electrical energy produced by each fuel-generator type,
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2. efficiency (heat curve) of each fuel-generator type,

3. heat value of each fuel-type,

4. emission factor, and emission control factor of each fuel-type.

4.3.1 Generator Fuel Type

The most important data required to estimate the emissions from a system is the

fuel quantity estimation. There are number of politico-economic and environmental

reasons for the changes in energy-fuel mix. Old coal based generation are being replaced

by more efficient combine-cycle gas fired units, and renewable generation adoption at an

exponential rate to improved economic and environmental sustainability [83]. In PJM

natural gas units are fast replacing coal units as both the base-load and the marginal

generators. Combine-cycle natural gas power plants are quickly becoming the base-load

generators of PJM, with its capacity factor rising from 50% in 2013 to 63% in 2016 during

which the capacity factor of coal-based units reduced from 54% to 49% [84], [85]. Even

though the modified RTS-96 test cases was updated with the latest fuel-type by installed

capacity, it is clear from the discussion in Section 4.2 that dispatch simulation will not

result in fuel mix of the actual fuel used over the time-series.

4.3.2 Generator Heat Curves

Generator heat curve data is the ratio of total thermal input to the useful electrical

output which indicates the efficiency of a thermal power plant. The thermal efficiency of

an unit depends on the operating point, usually the efficiency is the least at lower loading

points as most of the heat is taken up in maintaining the minimum temperature of the
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thermal system. Thermal power stations incorporate multiple heat recovery techniques

such as combine-cycle installation, air-preheaters, and water-preheaters to improve the

efficiency of the system. Along with the technologies used, the age of the power plants

also influences the thermal efficiency of the system.

The Fig. 4.3 shows the weighted thermal efficiency of the major generators in PJM

region. The weighted thermal efficiency H of a generator k is evaluated using the Eq. 4.2

where Qkt is the heat in one million British Thermal Units (MMBtu) required to generate

Ekt MWh of energy by generator k for time step t. For preparing the Fig. 4.3 the thermal

and energy data of the generators was derived from EIA, Power Plants Operations Report

which publishes with a monthly time resolution for a year (T = 12) [85]. Though the

report has the filings from all the generators in the U.S., I used the data from the

generators under the PJM interconnection. From the distribution of weighted heat curve

data it can be concluded that not all generators of a fuel-generator type have same

efficiency, and this distribution of efficiencies must be considered when developing test

cases, so that the quantity of fuel is estimated accurately based on simulations.

Hk =
∑

T
t=1 QktEkt

∑
T
t=1 Ekt

(4.2)

4.3.3 Emission Factor

Emission factors are the representative value that relate the physical quantity of

GHG/AP emissions to the quantity of fuel. These factors are often provided as a ratio of

lbs of emission produced when producing a MMBtu of heat. The emission factors are
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Figure 4.3. Distribution of the weighted thermal efficiency of the major fossil fuel-
generator types operating in the PJM Interconnection during 2016.

used to build emissions inventories that can motivate the authorities and researchers to

develop emission control strategies. In the U.S. the Environmental Protection Agency

(EPA) is responsible to provide the emission factors for GHG and AP for all the fuel-types

used across all the industries [86], [87]. To evaluate the emissions of a generator k, the

total heat activity Qk is multiplied with the emission factor θk of the fuel used. There are

multiple systems in place to reduce the emissions from a power plant, most of them are

installed to reduce the AP. To evaluate the exact emissions released into atmosphere the

missions have to be scaled according to the emission reduction efficiency (ηk) as shown in

Eq. 4.3.

Mk = Qk×θk× (1− ηk

100
) (4.3)
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The modified RTS-96 test system has all the required data to estimate emissions which

was sampled from the FERC RTO test system, which was developed from the EIA, and

EPA database of 2010. As described in Section 4.2 the RTS-96 was modified to represent

the 2016 PJM installed capacity and the the fuel-generator data along with their

corresponding emission factors were sampled to statistically represent the PJM system.

Based on the OPF simulation results presented in the Section 4.2, CO2 emissions was

estimated and compared to the 2016 PJM system average emissions as shown in Fig. 4.4.

The estimated emissions is much higher than the real emissions as the estimated fuel mix

was inaccurate in representing the real system. The main reason for the higher emissions

in Fig. 4.4 is because of the overestimated coal generation.

Figure 4.4. Comparing the system average CO2 emissions from PJM to the estimated
emissions from the modified RTS-96 test system in monthly resolution for 2016.
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4.4 Augmented Test Case

In an electricity market the generators get to submit a fresh set of offers every-day,

which can change the supply curve of the system. Daily generation fuel-mix profile not

only depends on the changing load but also changes with the change in the offer cost. To

replicate this dynamic characteristics of the generator supply curve in a simulation, the

cost functions of the test case generator need to be dynamically updated with the latest

offers of the real market-generators. At this point it is clear that developing a test case

with a fixed cost functions cannot result in representing the ED of a deregulated power

system for longer time-series.

4.4.1 Augmented Fuel-Generator Data

To represent the energy mix of the fuel sources of a real interconnection, the OPF

solution of the test case is augmented with the fuel mix information from a real system.

The hourly fuel mix data from electricity markets provide the energy produced from the

major sources to meet the demand and exports. At the time of writing this dissertation,

there are at least two markets (PJM, and ISO-NE) that publicly host this data [59], [88].

The data only contains the hourly energy, but does not specify any generator related

parameters such as cost, size or location. Without a co-relating parameter, the hourly

energy mix data cannot be attributed to a test case generator.

Capacity factor of the fuel-types in the real-system is used to co-relate with the

capacity factors of the test case generators from OPF. Capacity factor is the ratio of total

energy produced for a time period over the maximum energy that could be produced

during that period. A generator with higher capacity factor is generally related to that of a



www.manaraa.com

72

base-load unit and a generator with lower capacity factor is a peak load unit. For fossil

fuel thermal units the capacity factor can be related to the generator cost (high capacity

factor-low price, low capacity factor-expensive offer price).

The proposed Algorithm 4 statistically augments the test case generators with

fuel-turbine type data by co-relating capacity factors. The data required to perform this

augmentation are (a) the hourly fuel mix (Ht
f ) (b) detailed annual fuel-turbine energy and

capacity information from the EIA form: 923 [85] (c) OPF result of the test case pt
i. The

capacity factors (K f ,g) and the share of each fuel-turbine type from each fuel type is

evaluated using the Eq. 4.4, and Eq. 4.5 where Et
f ,g is the energy produced by a

fuel-turbine type at time t. The energy data is obtained from the EIA form:923 which is in

monthly resolution in detailed for each fuel and turbine type [85] . The capacity factor is

evaluated for annual (T = 12 months) duration and PICAP
f ,g is the installed capacity of a

particular fuel-turbine type [1]. The evaluated capacity factors and their corresponding

percentage share is arranged in descending order of the capacity factor.

The augmented cost functions of a test case are valid for a day, the same time

resolution to assign the fuel-turbine type. There are multiple fuel-turbine sources with

small percentage share which sometimes might not be possible to assign a full test case

for each fuel-turbine type. For a given day (d) the capacity factor κd
i of a test case

generator i is evaluated for that day based on Eq. 4.6, where pd,t
i is the output of the

generator at time t, and the pmax
i is the peak-hour output of the generator. To evaluate the

peak-capacity of each fuel-turbine type bdmax
f ,g for the day, the energy share during the

peak-hour Hdmax
f of a fuel type f is multiplied with the fuel-turbine share S f ,g of turbine

g and the total power for the peak hour as in Eq. 4.7.
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Algorithm 4 Algorithm to assign test case generators a fuel-turbine type based on the
market-hourly fuel data and capacity factor.
Input: hourly market energy mix, hourly OPF data from market-based test case, EIA-923

data for the market region
1: evaluate the capacity factors (K f ,g) for all fuel-turbine type
2: evaluate the share of each fuel-turbine type (S f ,g) as a percentage of energy by the

fuel ans sort them in descending order of (K f ,g)
3: arrange the energy share of each fuel-turbine type in descending order of its capacity

factor
4: for d = 1 to T do
5: determine the dispatch of each generator during the peak hour of the day

(pdmax
1 , ..., pdmax

n )
6: evaluate the daily capacity factors (κ t

i ) for all test case generators (n)
7: arrange test case generators in descending order of their daily capacity factor (κd

i )
8: initialize the index for test case generator i = 1
9: for all f ,g combinations do

10: evaluate the test case power by each fuel-turbine type at peak hour (bdmax
f ,g )

11: while bdmax
f ,g > 0 do

12: if pdmax
i ≤ bdmax

f ,g then
13: subtract the generator i capacity from the fuel-turbine type capacity bdmax

f ,g =

bdmax
f ,g − pdmax

i

14: assign augmented generator capacity admax
i, f ,g = Pdmax

i
15: increase the generator index i = i+1
16: else
17: subtract the remaining fuel-turbine type f capacity from the test case gener-

ator i capacity pdmax
i = pdmax

i −bdmax
f ,g

18: assign augmented generator capacity admax
i, f ,g = bdmax

f ,g

19: set bdmax
f = 0

20: end if
21: end while
22: end for
23: end for
Output: augmented test case generator capacity for the day (admax

n,F,G)
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K f ,g =
∑

T
t=1 Et

f ,g

PICAP
f ,g ×T

(4.4)

S f ,g =
∑

T
t=1 Et

f ,g

∑
T
t=1 Et

f
(4.5)

κ
d
i =

∑
24
t=1 pd,t

i
pmax

i ×24
(4.6)

bdmax
f ,g = Hdmax

f S f ,g

n

∑
i=1

pdmax
i (4.7)

Test case generators are augmented until the entire capacity of each fuel-turbine

type bdmax
f ,g is assigned completely. The capacity of each fuel-turbine type on a test case

generator ai, f ,g is less than or equal to the capacity of the test case generator i. A test case

generator can have anywhere from one to all the fuel-turbine types augmented over it. A

representation of the augmented test case generator is presented in Fig. 4.5 in which all

the fuel-turbine types are augmented over a test case generator i with peak capacity for the

day pdmax
i . The rightmost fuel-turbine type (F,G) on the cost function is the one with least

capacity factor (peak-unit) and the augmented generator ai f g1 is the one with highest

capacity factor (base-unit).

In addition to the fuel-type information, the test case is augmented with the

generator/turbine type and also the emission factors for GHG and AP to estimate the

emissions.
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Figure 4.5. Representation of the augmented generator data on to a test case generator

4.4.2 Augmented Heat Curves

To estimate emissions from simulations, each of the augmented generator is

assigned a heat curve. The thermal information such of each generator is provided in the

EIA form-923 data [85]. The generators that participate in PJM are filtered by co-relating

the company/utility names and location with the generators member information on PJM

website [89]. The data contains monthly heat input (mmBtu) and the total electrical output

(MWh) of each generator. This data is used to obtain the per-unit efficiency of each

generator by dividing the heat input to the electrical output (mmBtu/MWh). A piecewise

linear heat curve is fit to each generator based on the different operating points that a

generator might have during an year.

There are multiple generator facilities in the real-system with different ages and

efficiencies for each fuel-turbine type. The test cases have much fewer generators for a

fuel-turbine type, to statistically sample the test case with heat curves, the probabilities of
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the weighted heat was used for sampling. This thermal curve information constitutes the

third augmented data layer on the test case. Along with the heat curves, emissions factors

(EF) are also assigned to each augmented test case generator. EF represents the value of

the quantity of a pollutant released to the atmosphere with an activity associated with the

release of that pollutant [86], [87].

4.5 Simulation Setup

The proposed augmenting algorithm is implemented using the PJM

interconnection fuel mix data for the year 2016 posted in hourly resolution [59]. Data

from [82], [85] was used to develop the CF of the generators by fuel-type and

turbine-type for PJM which is presented in the Table 4.2. The CF of each fuel-turbine type

and each generator-type are not directly present in either of the data sources and had to be

derived for this work. The real-system contains many more fuel-turbine types which have

less than 0.1% of the total energy share, and were not included for this study because of

their minuscule share.

The proposed technique is implemented on three test cases (a) the RTS-79, (b)

RTS-96, and (c) the synthetic test case of South Carolina 500 bus system [15]. All these

test cases along with the augmented fuel-turbine and heat curves data will be available on

an open-source repository. The OPF was performed using the OPF solver of

MATPOWER with the scaled demand of PJM as described in cost functions augmented

test cases paper [90]. The time-series load curve used for the proposed technique is

exactly the same load curve used in Section 4.2. Because of the nature of renewable

sources being non-dispatchable, the renewable energy share is directly subtracted from the
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load. The EF of each fuel-turbine type is provided in the Table 4.3.

Table 4.2. 2016 PJM generation by fuel source and unit type along with their respective
capacity factors

fuel type % actual fuel turbine S f ,g%
capacity

factor
nuclear 34.4 uranium ST 100 91.3

coal 33.4

bitumi-
nous

ST 87.5 46.2

sub-
bituminous

ST 10.5 44.6

waste coal ST 2 42.8

natural gas 23.1
natural gas

CC 82 62

GT 12.5 6.9
ST 4.5 12.3
IC 1 10

hydro 1.5 hydro
run of 60 31.4

pumped 40 13.7
multi-fuel 1.5 multiple multiple 100 50

oil 0.2
distillate

oil
IC,GT 81 3.2

residual
oil

IC,GT 18 0.7

other gas 2.7

landfill
gas

multiple 43.5 50.3

other bio multiple 20 64
other
gases

multiple 36.5 8

renewable 2.8 multiple n.a 100 27

4.6 Simulation and Results

The fuel mix and emissions from the proposed technique is compared to the PJM

capacity-based generator assignment of the RTS-96 that was describes in Section 4.2. The

Fig. 4.6 is the fuel mix comparison of PJM system with the simulated fuel mix in hourly

resolution. The order at which the fuel-types are stacked is just one of the different orders

of representing the fuel mix and has no resemblance with the order at which these
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Table 4.3. Detailed classification of the fossil-fueled generators used under PJM and their
corresponding emission factors

fuel
class

actual fuel turbine
CO2 EF

(lb/mmBtu)
SO2 EF

(lb/mmBtu)
NOx EF

(lb/mmBtu)

coal

bitumi-
nous

ST 210.6 1.62 0.5

refined
coal

ST 210.6 1.62 0.5

sub-
bituminous

ST 214.2 1.94 0.41

waste coal ST 250.6 1.94 0.41

gas
natural gas

CC 117 0.0006 0.137

ST 117 0.0006 0.137
GT, IC 117 0.0006 0.137

other gas

blast
furnace

gas
ST 604.7 n.a n.a

landfill
gas

IC 117 0 0.2

other bio
gas

IC 117 0.0006 0.2

synthetic
gas

CC 130.1 0.0009 0.15

propane
gas

ST 135.5 0.0009 0.15

multi-fuel

municipal-
waste

ST 200 0.025 0.49

waste
wood

ST 206.8 0.025 0.49

tire-waste ST 189.5 5.34 0.166

oil

distillate-
fuel

IC, GT 163.1 1 0.3

residual
fuel oil

IC,
GT,
ST

163.1 1 0.3

kerosene IC 165.8 1 0.3
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fuel-types are dispatched. When compared to the capacity-based fixed fuel type

assignment in Fig. 4.1 the hourly fuel mix closely represents the actual fuel mix of the

PJM interconnection. The proposed technique could represent the coal and gas mix

variation across the year, which the capacity-based fuel mix could not achieve. It is clear

that the proposed technique is capable of representing the PJM interconnection fuel mix in

both fuel-type and the chronological usage of these fuels.

Figure 4.6. Comparing hourly generator output per fuel type of PJM interconnection with
the proposed capacity-factor based dynamic fuel-type assessment on RTS-96 test case
based on OPF with scaled demand of 2016 using stack plots.

To accurately evaluate the average emission from a system, the simulation has to

produce similar generator dispatch as a real system. Pie charts comparing the annual

energy produced by each fuel-type in PJM and by the proposed technique is presented in

Fig 4.7. It can be observed that the proposed technique is capable of producing fuel mix

which more accurately than the capacity-based simulation as seen in Fig. 4.2. As both the
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simulations used the same load curve, the estimated energy from coal is much higher as

the capacity-based fuel assignment test case used the cost functions of FERC RTO test

case based on 2010 had much cheaper coal generators than the natural gas.

Figure 4.7. Pie chart comparing the annual energy produced per fuel source in the PJM
innterconnection on the left and by simulation on RTS-96 on the right.

The system average CO2 emission is evaluated as a ratio of the total emission over

a time period in lbs to the the total energy produced during the same time period in MWh.

PJM system publishes this system average emissions in monthly interval and is presented

in comparison to the emissions produced from simulation using the proposed method in

Fig. 4.8. The PJM system average emissions for CO2 and air pollutants SO2 ,and NOx are

provided in the PJM environmental information services website [91]. As the proposed

technique has some degree of randomness in selecting the heat curves the same results

might not reproduced. The Fig. 4.8 is the best goodness of fit (93%) I achieved when I
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simulated the proposed method 50 times.

Figure 4.8. Bar graph representing the PJM monthly system-wide emissions per MWh of
generation for 2016 and the bar graph of simulated emissions on RTS-96 test case.

The Fig. 4.9 presents the system average CO2 emissions from the 50 trails

performed on three three test cases mentioned in Section 4.5. The each bar except for the

one representing PJM represents the mean of emissions from the 50 trails simulated on the

corresponding test case. The thick black lines over the bars represent the standard

deviation for the 50 trails. The January and February could not perform accurately as the

majority of gas generation had been classified as other gasses which is unknown to us.

There are many gaseous sources for generating electricity and the exact source could not

be accurately traced. Nevertheless, I only require one set of heat curves for a test case, and

that set can be saved for multiple other simulations when this test case is used.

As mentioned in Section 4.1 SO2 and NOx are the main contributors for AP and
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Figure 4.9. System average CO2 emissions from three test cases (RTS-79, RTS-96, and
the SC-500) based on 50 trails Monte Carlo simulation. The bars represent the mean of
the trails and the black lines over the bars represent the standard deviation. The blue curve
represents the system average emissions form the PJM interconnection.

acid rain. The proposed augmented test case are provided with emission factors along

with the emission reduction efficiency for SO2 and NOx. A detailed description of the

emission factors can be found in the Table 4.3. The system average AP activity based on

simulation is compared to the PJM system average AP activity as shown in Fig. ]4.10.

These emissions represent the controlled emissions of these pollutants. Each generator

have to implement techniques to curb the air pollutants.

4.7 Conclusion

In this paper a novel approach based on real market data has been proposed to

augment open-source test case generators to represent a real power system. The technique

has been developed so that any power system researcher can augment a test case to

perform accurate environmental emissions assessment for their research. The technique
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Figure 4.10. Comparison of simulated system average SO2 and NOx emissions on RTS-96
in green to system average emissions form the PJM interconnection in blue for the year
2016.

presented in this paper requires test cases with augmented cost functions which are derived

from a real electricity market. In combination with the cost functions and fuel-turbine

data, these test cases can represent the dispatch of a real deregulated power market.

The proposed technique has been implemented on three test cases of different

sizes, and the results from each test case has been compared to the real power system. The

test cases showed fuel-mix and emissions similar to the real power system. These

augmented test cases can be used for simulating transmission level dispatch based on a

deregulated power system, and evaluate the economic and environmental impact of

changing load and generation. The accuracy of the proposed technique can be improved if

the fuel types labeled other can be determined accurately. The AP emissions can also be

improved if accurate pollution control techniques are known.
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CHAPTER 5 Benefits of Aggregated Demand Response Participating in Bulk-Power

Market

5.1 Introduction

The U.S. Federal Energy Regulatory Commission (FERC) issued Order No. 888

to deregulate the U.S. electric power system [92], which granted open access of

transmission to all generators. The forethought of deregulation was to encourage

investments to provide cheaper electric power generation by competing independent

power producers. Under deregulation, increasing electric demand, combined with the

physical constraints of the electric power network, can give unlimited market power to a

few generators, resulting in relatively large locational marginal prices (LMP). These

generators are typically fossil-fueled generators that have a fast start and ramp time.

In such cases of LMP spikes, demand response (DR) can be used to intentionally

change normal power consumption in response to the electricity price (LMPs), or in

exchange for financial incentives [7]. Technical and economic benefits of DR have been

identified by law makers [7] and the research community [93]. Across the literature, the

most common advantages of DR are:

1. provide financial benefits for DR participants (end-consumers) and electricity

retailers (load serving entities (LSE)) [93]–[95];

2. improve reliability for independent system operators (ISOs)—also providing

benefits from deferred infrastructure investment [95], [96];

3. increase market economic efficiency by reducing price fluctuations and
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congestion [24], [97]; and

4. reduce green house gas emissions (GHG) [41], [98].

The literature broadly classifies DR programs into two categories: (a) price-based

(PBDR), and (b) incentive-based (IBDR) [93]. Under PBDR, customers are exposed to

time-varying rates to which they are expected to adapt their demand. PBDR is

administered by the electricity retailers or LSEs, and the participants are mostly

residential and small commercial organizations. Among the two classes of DR, PBDR has

a smaller contribution (∼7% in 2010) [99], but this number is increasing in the past

decade as more utilities are offering dynamic pricing, and customers have gained access to

advanced metering [100].

As per the latest report period, IBDR has greater enrollment than PBDR [100].

Under IBDR, customers are paid incentives for modifying their demand during requested

time periods [93]. While both classes of DR have their own advantages and impediments,

some of the challenges are as follows [101]:

1. price volatility is increased using real-time pricing (RTP) [102];

2. additional investment is required for advanced metering to communicate RTP to

customers [103];

3. RTP requires customers’ prompt response in consumption to reduce billing [9]; and

4. a new peak may be formed during off-peak hours, commonly known as the

rebound-effect [104].
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The main source of revenue in PBDR comes from the energy market, as the

demand is modified in response to the price of retail electric energy [34]. FERC Order No.

719 was issued to allow non-generating resources to participate in the bulk-power market,

which enabled entities to bid load reduction directly into the electricity market [105].

Bidding load reductions are only possible with IBDR, where the response is determined

by the difference between the customer baseline (CBL) and the actual electricity

consumption. With the capability to participate in the organized power market, IBDR can

generate revenue from capacity, energy, and ancillary markets [99]. The ability to control

loads in IBDR generates interest among the power research community, as the impact of

load variation on the power system can be studied [33], [106]. There are a growing

number of power system researchers that consider IBDR as an effective solution to

increase economic efficiency [102], [107]. Increased sustainability in electric power

systems is also commonly listed as a benefit of DR; in [41], the authors describe the

economic and environmental sustainability of an IBDR in a smart grid. In this work, a

pool-based IBDR model is used to reduce utility payments, improving the economic

efficiency of the system.

As IBDR provides the opportunity to control loads, regulatory bodies (FERC

Order No. 745) provided opportunity to participate in the market as a resource [36]. Some

early work was conducted to study the impact of DR participating in the energy

market [32], [108], where DR was modeled as a price responsive load to maximize social

welfare. Because the demand is elastic to price, the load shifted to a lower price point to

minimize system operation cost. The DR exchange (DRX) is a conceptual pool-based

market to trade DR offers [38]. DRX provides the power system operator and other
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market entities with additional flexibility [38]. There has been increasing interest in

DRX-based DR because of the flexibility in modeling the objective function, and the

ability to maximize the social welfare of the DR provider and other market entities. There

has been considerable research in forming market clearing mechanisms for DRX with

various objective functions [109]–[111]. In this work, the DRX is implemented to

minimize electric utility payments. The DR providers are paid by utilities for the service,

as the utility is benefited via reduced LMPs and lower payments. The DRX model in this

work ensures that the rebound-effect does not significantly increase utility payments

during off-peak hours.

Residential resource optimization to maximize profit of DR aggregators (DRA)

participating in a bulk-power market through a DRX is presented in [35], but there was no

model presented to integrate DRX into existing electricity markets. The authors in [112]

propose a market clearing algorithm for DR offers, and illustrate the proposed technique

on a test system. Though the authors provided a market clearing technique, there is no

evidence of interaction with a bulk-power market, and market entity surplus is not

included. In [110], a DRX is presented that operates in the day-ahead, intra-day,

and balancing markets, where wind power plants participate in DRX to maximize their

profit. The paper mainly quantifies the DR-market interaction to maximize the profit of

the wind power plant, but the interaction of bulk-power entities and surplus is missing. A

similarly themed research publication can be found in [111], where the DRX is used by

virtual power plants to maximize their profits. The work presented in [113] describes DR

bid/offer modeling based on CBL attributes. This is a significant work in this field, as

customer willingness/behavior is important in determining the cost of DR. However, a



www.manaraa.com

88

market model was not considered for the ISO–DRX interaction.

One aspect of DRX-related research that has not been well-studied is models for

integrating DRX into the existing bulk-power market. A significant work related to DRX

interaction with an existing day-ahead market model is proposed in [109]. The DR offers

are modeled using customer willingness, and are cleared in the day-ahead market along

with renewable energy sources (RES). The proposed model maximizes DR seller profit

and market welfare based on a two-step market clearing process. The source of generator

cost functions used in the test cases have not been mentioned, which is important for

making analyses on simulation results based on restructured power systems, as generator

cost functions should represent market offer prices rather than fuel cost-based

functions [114].

The literature proves there is a growing interest in IBDR and DRX, but there is

missing work that consolidates the advantages and challenges for integrating a DRX into

an existing electricity market structure. In addition to DRX-market integration, the

interaction of DR offers with the electricity market is investigated to study the main

factors that influence the profitability of DR and DR-as-a-service. In this chapter, the DR

offers are modeled such that they are a multi-period, incremental offer block structure.

The DR offer not only contains curtailment, but additionally contains load shift

information to mitigate rebounds. The updated DR offer structure and the multi-period

market clearing is simulated on an augmented test case that statistically represents the

prices of an actual power market. The scope of DR opportunities is investigated in existing

bulk-power markets, and some of its benefits are presented in this chapter. Additionally

this chapter provides details of how DRX can overcome some of the impediments DR
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faces for power market adoption. The unique contributions of this project are:

1. an extended review of integrating DR-as-a-service to the bulk-power market,

describing the benefits and challenges to bulk-power market entities;

2. an investigative study to determine the factors that influence the impact of DR on

reducing utility payments in a day-ahead market; and

3. the design of a multi-period DR market clearing technique that considers the

monetary impact of demand rebound.

This chapter is organized in a way that the reader can understand the structure,

operation, and challenges of DRX. The electricity market structure with the day-ahead

energy market operation and market sponsored DR programs are introduced in

Section 5.2. In Section 5.3, an extended literature review of DR-as-service is presented,

including the advantages and challenges to bulk-power market entities. The proposed

model of a DRX integrated with a day-ahead market is described in Section 5.4, where the

multi-period market clearing algorithm for the DRX is presented. The simulation setup is

described in Section 5.5, including the augmented test case for representing actual power

market prices. The results and discussion are presented in Section 5.6, with Section 5.7

concluding and providing possible areas of future work for DR-as-a-service.

5.2 Electricity Markets

Each entity in a fully deregulated market is responsible for the operation,

maintenance, and expansion of its business. In most parts of the U.S., there are organized

bulk-power markets to trade electricity through an ISO/regional transmission organization
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(RTO). This section describes the operation of an organized ISO market, and the

opportunities bulk-power markets created for DR.

5.2.1 Day-Ahead Market

In general, a market will have two groups: sellers and buyers. In an electricity

market, the sellers are the generators, and buyers are the electric utilities/retailers (LSEs),

with the ISO performing the role of market operator. In a day-ahead market, the ISO

chooses the most economic generation available, without violating any physical limits of

the power system. This optimized system supply is achieved by running unit commitment,

economic dispatch, and optimal power flow (OPF). A day-ahead market begins with the

generating companies offering their available generating capacities and price, and the

retail electric companies bidding demand based on load forecast.

The objective of the ISO is a cost minimization problem using Equation (5.1). In

its simplest form, OPF can be formulated using Equations (5.1)–(5.5), where, for a

generator i, Ci is the offer cost function, and Pt
i is the power output at time t, bounded by

the minimum (Pmin
i ) and maximum (Pmax

i ) generator output, given by Equation (5.4). The

objective function, Equation (5.1), is subject to constraints Equations (5.3) and (5.5),

where D j is the demand at location j among M load points on the network. At any given

instant, the total generation must equal the total demand plus system transmission losses

(PL) in Equation (5.3), and line capacity limits must not be violated, given by



www.manaraa.com

91

Equation (5.5):

min
Pi

24

∑
t=1

N

∑
i=1

Ci(Pt
i ), (5.1)

Ci(Pt
i ) = αi(Pt

i )
2 +βiPt

i + γi , (5.2)

subject to

N

∑
i=1

Pt
i =

M

∑
j=1

Dt
j +Pt

L, (5.3)

Pmin
i ≤ Pi ≤ Pmax

i ,∀i, (5.4)

0≤ Pi j ≤ Pmax
i j ,∀i, j. (5.5)

The outcome of OPF is the optimal dispatch for each generator and the the cost of

electricity at each bus (LMP), which is set by the offer price of the marginal

generator—the generator that can meet the next megawatt of load. Each generator is paid

the LMP of the bus they are injecting power. Similarly, every LSE pays the LMP for every

unit of electricity purchased. The LMP can spike during peak load times, or during

network congestion when an expensive local generator is committed. DR can reduce

demand in these situations, offsetting the expensive marginal generator and hence

reducing the LMP.

5.2.2 DR in Electricity Markets

Most ISO organized markets in the U.S. have DR programs to improve system

reliability, which provides opportunities for non-generating entities to earn revenue from
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the bulk-power market. The markets that DR can currently participate are capacity,

energy, and regulation. Although capacity charges make up 11% of the bulk-power cost,

the DR revenue earned from capacity markets is the majority among all markets. Let us

consider the PJM market; during the year 2016, the total revenue from economic load

response (a DR program organized in the energy market) was $3,550,535, whereas the

emergency DR program (a DR program organized in the capacity market) had a total

revenue of $648,997,257 [115].

Energy charges comprise more than half of the bulk-power cost, but DR

participation in energy markets has been relatively low. The main reason for poor

performance of DR in energy markets is due to the poor rate at which the resource is paid.

In 2016, the average rate earned for participating in the energy market was 43 $/MWh,

which is far less than the $69,000 per MW/year of capacity during emergency DR. These

emergency DR programs have heavy penalties for non-performers, so only large entities

with sophisticated direct load control operators participate in such markets (e.g., industrial

arc furnaces).

FERC Order No. 745 was a landmark order for DR that opened the energy market

for DR participating as a resource. In the energy market, DR providers earn revenue based

on the LMP of the bus they are operating, like other generators in the day-ahead market.

Figure 5.1 represents the cumulative generator offer curve of the PJM day-ahead market

for 27 January 2014. Each blue circle represents a generator and its offer price, the size of

each generator given by the gap between each circle in the positive direction of the x-axis.

Without considering any line or voltage limits, the marginal energy cost will be

determined by the intersection of total demand and this supply curve. A DR offer in the
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day-ahead market should be offered at an intra-marginal price to be selected by the ISO.

Analyzing the recent trends in annual system marginal price of PJM, which was 53.7

$/MWh, 38.4 $/MWh, and 31.8$/MWh for 2014–2016, respectively, DR participating as a

resource in the energy market may not be economically sustainable.

Figure 5.1. Cumulative generator supply curve of all participating in PJM day-ahead mar-
ket for 27 January 2014. Each generator is represented as a blue dot, and the shaded patterns
represent regions favorable for shift (grid), curtail (honeycomb), and no activity (dots) from
left to right, respectively.

Instead, if the DR is offered as a service for the energy market, the cost of the

service can be treated independently from the LMP, and the DR would be compensated

based on the benefit it provides to the market. The benefiting entity pays for the DR

service, where the most common entities benefited are electric utilities, as DR causes a

reduction in LMP, which reduces utility purchases from the bulk-market. In Fig. 5.1, if the

demand curve intersects the supply curve in the region shaded by the dotted-pattern, the

marginal price will be high, but demand reduction would not cause a reduction in price;

DR-as-a-service would not earn revenue when the system is operating in this region.
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When the demand intersects the supply in the region shaded by the honeycomb-pattern,

a small change in demand can greatly impact the marginal price, which is the ideal region

for DR in an energy market. If the DR operation can have a controllable rebound, then it

would be ideal to shift the demand to the region shaded by the diamond-pattern, as

additional demand will not significantly increase the marginal price. The specific values

of offer price and demand shown in Figure 5.1 should not be considered as the absolute

delimiter for each region, as this will change daily in the market. Rather, the demarcation

of the regions is dependent on the shape of the daily supply curve.

5.3 DR-as-a-Service

Regulatory bodies have opened opportunities for non-generating resources, such

as DR, to participate in various market operations. DR is being used in ancillary services

for regulation and reserves. This section presents the idea of using DR-as-a-service (as

opposed to a resource) to improve economic benefits to other bulk-market entities. This

section presents a review of the benefits for (i) bulk-power entities willing to pay for

DR-as-a-service for their financial benefits, and (ii) DR service providers and

end-customers willing to trade DR-as-a-service. As providing DR-as-a-service is still in

its nascent state, this chapter has some of the state-of-the-art research in this field. Like

any new service, DR will have challenges to be solved for integration into bulk-power

markets. In this section, a review of such challenges as well as literature that addresses

these challenges is presented.
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5.3.1 DR Service Buyers

Generators: FERC Order No. 745 was challenged by Electric Power Supply

Association in court, as they did not want non-generating resources to be able to set the

market LMP. If used as a resource in the energy market, DR does not provide benefits to

generators, and in fact competes against them. Additionally, as discussed in Section 5.2.2,

DR as a resource might not be economically sustainable for the DR providers;

DR-as-a-service can be engineered to benefit both the DR providers and the generators.

Reducing GHG emissions has been an important topic of research in power

systems. In many states where renewable portfolio standards (RPS) are enforced,

traditional generating entities maintain the RPS via a credit-trading mechanism [116]; DR

can be made available as a service to reduce GHG emissions [41], [98], [117] and can be

used to trade carbon-credits. The DR service can be structured such that DR providers sell

both DR (as a curtailment service) and carbon credits, and LSEs invest in the curtailment

service to reduce their payments, while generating entities procure carbon-credits.

There has been a change in the generation profile over the past decade, as

significant investments have been made in RES. An ISO that operates under a fair market

policy must dispatch the available resources economically and securely. In general,

demand is inelastic to changing market LMPs under fixed rate tariff and time-of-use

(ToU) plans. Under lower demand conditions, the ISO sometimes needs to curtail or sell

additional RES to adjacent load areas at negative revenue [118], [119]. A consolidated

demand side entity (e.g., DRA) that owns multiple resources, like distributed RES and

energy storage systems (ESS), can optimize the available resources and modify the
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demand curve to better utilize RES while maximizing their profit through the bulk-power

market [120]. A DR-as-a-service model proposed in [109] utilizes a DRX to offer DR to

renewable generation and ESS entities, where the objective of the DRX is to maximize the

social welfare of DR sellers and DR buyers, thus improving RES utilization.

Utilities and REtailers: Utilities/retailers (LSEs) are the main entities that benefit

from DR [93], [117], [121]. In 2018, most U.S. retail markets used the fixed tariff model.

DR-as-service will be beneficial for utilities that use flat rate pricing because the price at

which the utility buys the bulk-power is variable, but is sold to the end-user at a fixed rate.

DR can bring large changes in the bulk-power price, which may allow utilities to sell at a

higher profit (purchase less peak generation) [117], [121], invest in additional

infrastructure, or reduce retail rates according to the public utility commission.

DR-as-a-service would also benefit those utilities that offer ToU pricing, which is

fixed for certain periods of the day and season, as market prices are volatile and peak

prices may occur at non-peak price ToU hours [102]. There are a few utilities that offer

real-time pricing (RTP) to their customers (sell energy to the end-user at the same cost as

the bulk-power market), but IBDR may not be impactful for such utilities, as the

consumers pay the same energy price of the bulk-power market.

Significant charges for a utility are distribution and wheeling charges, especially if

the entity is a retailer that does not own the physical infrastructure. Transmission charges

are generally calculated based on the utility contribution to the coincidental peak of the

system [117], [122]. Using DR-as-a-service to reduce demand during such peak hours

will ensure lower transmission charges for the utilities. These savings on

transmission/wheeling charges are beneficial for utilities with any type of billing (flat,
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ToU, and RTP), as these are fixed charges based on the behavior of a few peak hours per

year, irrespective of the energy price during that hour.

ISO/RTO: In a fair market, the ISO should not profit from the power transaction

(independent entity). Market surplus—the additional revenue generated due to

congestion—is returned to entities that own financial transmission rights (FTRs). System

security is ensured through the use of ancillary services; DR is one of the cheapest

services, as there is no additional ISO investment [37]. While other models of DR can be

successful in reducing LMP spikes, DR-as-a-service can be used for other ancillary

services to keep the system secure.

The transmission system operator (TSO) is an under-discussed entity in the power

market, usually a monopoly and operated by the ISO. The ISO charges a fee for open

access of transmission from every participating power market entity. To cater to the needs

of the power producers and buyers, the TSO needs to invest in network expansion. These

expensive investments can be temporarily deferred through DR, as extra transmission

capacity is mostly needed during system peaks [24], [117].

Curtailment Service Providers: The benefits for the DR providers under various

PBDR and IBDR programs have been presented across the literature [34], [107], [123]. In

this section, additional benefits of DR providers are discussed that are gained if DR is

treated as a service.

Demand REsponse Aggregators: DRAs are for-profit entities that have a set of

customers willing to modify their demand for incentives. The DRA provides incentives to

their customers by generating revenue from selling DR to bulk-power entities. When DR

is offered as a resource, the DRA must ensure the DR offer price submitted to the
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bulk-power market is competitive with other generator offers. The marginal generator

offers have been reducing annually, as mentioned in Section 5.2.2, which makes it difficult

for the DRA to operate in the energy market.

In the DR-as-a-service model, the DRA can submit offers to the market based on

their demand portfolio, but the offer does not participate in the energy market clearing

process. Instead, the DR is compensated based on the quality of service provided, so the

DRA is capable of generating enough revenue to earn profit and pay incentives to

participating customers [38], [112], [117]. Even though the DRA submits an offer price

greater than the marginal energy price, the benefiting entity is able to pay for the service

as the total benefit received is greater than the small quantity of DR required (which will

be shown in detail in the simulation study). There are more potential buyers for DR when

offered as a service, creating a more sustainable business model for the DRAs.

Consumers: Electricity customers that do not have advanced metering, or do not

live in the right geographical location, cannot enroll in ToU or RTP-based billing models

(PBDR) [103]. IBDR programs give DRAs direct control over a few electric loads to

provide DR-as-a-service; the customer need not pay attention to the DR events. By

informing the DRA their willingness towards the event and required incentive, the

customer earns financial benefits from successful DR events. The customer can change

their willingness and/or opt-out of individual DR events, unlike PBDR. Additionally,

proactive customers can provide different willingness over the DR period, where they can

increase DR activity during high DR price offers, and reduce when earnings are low [109].

RTP customers not participating in DR that reside in the same load area as the

DR-as-a-service program will also receive benefits of the DR activity, resulting from
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reduced energy prices (although they will not receive the additional aggregator incentives).

Large consumers (industrial, large commercial) pay additional charges for

capacity and distribution based on their contribution to the coincidental peak of the utility.

By reducing their contribution during these coincidental peaks, they can save heavily on

distribution and capacity charges. DR-as-a-service can be used to reduce this coincidental

peak contribution.

5.3.2 Challenges Integrating DR-as-a-Service

There are challenges integrating any new model/service into existing deregulated

bulk-power markets. This section presents the state-of-the-art industrial and research

practices, and the unmet challenges of integrating DR-as-a-service into the bulk-power

market.

Compensation, Incentives, and Penalties: From the discussion in Section 5.3.1, it

is inferred that the DR service providers can gain sustainable revenue by providing

DR-as-a-service. Most literature discusses the total revenue gained by the DR service

providers, and the total benefit to the power market entity [109], [110], [124]. The total

benefit and cost of DR-as-a-service discussed in prior work considers a single entity on

the system (single utility). Free-riders are entities that enjoy the benefits of a service

without paying. The authors in [38], [112] show an estimate of the free-riders, and how

much each entity benefits, but only one participant of each entity is considered. The

problem is more complicated when there are multiple participants of each entity located at

multiple nodes on the network, and compensation techniques for DR-as-a-service need to

be designed based on multiple competing entities at different network locations.
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Once the DRA receives market compensation, they must distribute incentives to

the participating customers. Accurate evaluation of CBL is essential in determining

incentives, and also impacts customer willingness. Liberal baseline estimation will result

in losses to the DRA, while a conservative estimate punishes customers. Authors have

used real data of both residential and non-residential loads from California to estimate

CBL using regression models. In [125], the CBL was estimated using various time-series

analysis, regression, and exponential moving average techniques for different customers

based on their flexibility. The authors performed profit analysis based on each customer

for each electricity market. A CBL estimation technique was discussed in [126], which

attributes CBL changes for customers that already reduced their energy consumption

using energy efficiency techniques.

The planning of DR happens day-ahead, but the transactions occur based on

real-time market values. There are chances that a DRA offer is cleared, but fails to

perform the DR. During such events, the ISO commits reserves, which can cause a spike

in LMP. During such situations, the DRA and end-users that failed to perform may be

penalized. During partial participation of DR, where few customer loads are curtailed with

no market efficiency improvement, the DRA does not receive incentives as no entity has

benefited. During such events, the DRA is obligated to pay the customers who performed

DR, in-spite of paying penalties to the market, which incurs losses to the DRA.

DR Offer Structure: To develop realistic DR offers, the DRA must know the

demand-elasticity of customers with respect to price. The elasticity depends on the type of

load (e.g., residential appliances), climate (e.g.,heating and cooling loads), and type of

customer [127]. The bid offer should reflect the customers elasticity towards the incentive
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offered, which requires large surveys. One such work to determine the elasticity of

residential consumers is presented in [128], but the responses are local to a particular

region, and these responses may change over time. After obtaining such elasticity data,

they must be translated to incentives based on the expected revenue to the DRA.

Residential customers comprise 40% of the total electric demand, and as such are

a great potential for DR. To model a residential DR offer, the DRA must know the demand

curve to the appliance level. Such information is sensitive, and is not widely available for

the research community. The authors in [13] designed a technique to synthetically

generate load profiles that can be used to develop DR offers. In real-world scenarios, there

would be multiple DRAs competing to provide DR-as-a-service. In addition to incentives,

the DRA must also consider competition in determining offer strategy.

DR Trigger: If DR is provided as a service, there must be a triggering mechanism

to call for this service. DR currently participates in ancillary services, which are triggered

by certain power system operational limits. If DR-as-a-service is used for economic

purposes, a triggering mechanism must be provided. In one of my previous work [129]4, a

statistical pattern recognition is implemented to analyze day-ahead market LMP, load, and

climate data to trigger the DR service during market inefficiencies. This classifier only

triggers during high LMP-based inefficiencies, where load curtail bids can be evaluated.

An investigative study needs to be performed to evaluate the factors that influence the

impact of DR on the electricity market, and proper DR-as-a-service triggers need to be

designed.

4This work was presented in North American Power Symposium 2016 in Denver, CO
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5.4 DRX in the Day-Ahead Market

In this chapter, DRX—a non-profit entity working as a pool-based market under

the ISO is used to integrate DR as-a -service. As this entity is modeled as a market, it

resembles the operation of the ISO. The sellers in this market are the DRAs that offer

DR-as-a-service, and the buyers are those bulk-power market entities that benefit from the

DR service (i.e., electric utilities in this work).

The DRX is integrated into the day-ahead energy market operation as shown in

Fig. 5.2. The day-ahead market begins its operation by accepting generator offers and

utility load forecasts. The DRX operates in parallel to the ISO, and is triggered when

economic inefficiency is incipient, and DR-as-a-service is required. The DRX accepts

day-ahead DR offers from DRAs, and clears those DR offers that benefit the bulk-power

market. The bulk-power market is settled by the ISO using DRX-cleared DR offers, and

the energy market LMPs are posted in the day-ahead. The benefiting entities from

DR-as-a-service compensate the DRA offers at the marginal DR cost. Part of the DRA

revenue is then passed on to participating customers as incentives (i.e., IBDR).

The DRAs in this study are for-profit entities that have a set of customers that are

willing to curtail and shift their scheduled loads. A DRA prepares a cumulative DR supply

curve by aggregating all the DR resources within their purview. The objective of the DRX

in this study is utility payment cost minimization [114]. The OPF evaluated at the DRX

will have the same formulation as in Equation (5.1), but will now be subject to a slightly

different equality constraint, as shown in Equation (5.6), where Rt
j is the DR at load bus j

at hour t, and λ t
j is the LMP:
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Figure 5.2. Day-ahead bulk-power market operation time-line with an integrated DRX.

The DR offer consists of five fields: (i) bus number (location on the network where

the aggregated DR is connected); (ii) the hour of DR; (iii) the offer quantity blocks and

(iv) corresponding offer prices; and (v) the shift window. DR offers are constructed by the

DRA based on customer curtailment elasticity. The DRA arranges the DR blocks in

incremental order of price, as shown in Figure 5.3. The size of each block may not

necessarily be equal, as a DRA may have various classes of customers with different

capacities. The maximum number of blocks per DR offer is capped at an integer k, similar

to generator offers in PJM being capped at 10 blocks [130].
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Figure 5.3. Representation of a DR offer block structure with k offer segments, where each
block i = 1, . . . ,k is comprised of an amount (MW) and offer price ($/MWh).

Algorithm 5, which is used for selecting near-optimal DR offers, is based on the

GENITOR version of the genetic algorithm (GA) [131]. The objective of this algorithm is

to minimize the total utility payments for the ISO market, as described in Equation (5.7).

The GA chromosome represents a solution to the optimization problem; for the DRX, the

chromosome is shown in Figure 5.4. Each chromosome has an associated fitness value,

which corresponds to the objective function of the problem (better solutions will have

better fitness values). There are p chromosomes that comprise the GA population.

Figure 5.4. The structure of the GA chromosome with n DR bids. Each gene (representing
one DR offer) is comprised of (i) the DR offer selection (top blue row), where ui = 1
indicates the offer is selected, (ii) the DR block selection (middle green row), where, if
selected, the DR offer would use bid block bi, and (iii) the shift hour (bottom red row),
where, if selected, the DRA would shift the demand to this hour.

The chromosome is made up of n genes (equal to the number of DR offers

submitted to the DRX for that day), where each gene in the DRX GA represents one DR
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offer (as described by Figure 5.3). Each gene is comprised of three parts: (i) the DR offer

selection (shown as the top blue row); (ii) the DR block selection (middle green row); and

(iii) the shift window (bottom red row). For a given gene i, if ui = 1, the DR offer

represented by that gene is selected by the DRX. If selected, the DR offer size and cost is

provided by block bi = 1, . . . ,ki, where ki is the number of blocks in the DR offer. The

demand of the selected DR offer block is shifted to hour si = 0, . . . ,wi−1, where wi is the

number of hours in the shift window, and si is the number of hours to shift from the

beginning of the shift window (e.g., si = 0 moves the demand to the start of the shift

window).
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Algorithm 5 Algorithm to select day-ahead DR offers using GA
Input: test case, DR offers, population size,

1: load all day-ahead DR offers

2: for j = 1 to p do
3: for i = 1 to n do
4: generate random Boolean value for ui

5: generate random integer between 1 and ki for bi

6: generate random integer between 0 and wi−1 for si

7: add gene i to chromosome j

8: end for
9: evaluate fitness of chromosome j

10: insert chromosome j into population based on fitness

11: end for
12: repeat
13: select two chromosomes from the population using linear bias

14: select two random indices and perform two-point crossover

15: randomly mutate selected genes from child chromosomes

16: evaluate fitness of child chromosomes

17: insert child chromosomes into population based on fitness

18: remove two chromosomes with worst fitness (highest value) from population

19: until stopping criteria

20: DRX select DR offers based on best chromosome (least fitness value)

Output: selected DR offers

The first step of the GA is to generate an initial population that describes the DRX

selection of DR offers. For each gene in the chromosome, ui is randomly generated as a

Boolean value (with equal probability), and bi and si are uniformly distributed in the

ranges [1,ki] and [0,wi−1], respectively, bi,si ∈Z . The initial population is comprised of

p such randomly generated chromosomes, each with n DR offers (genes). The fitness of

each chromosome in the population is calculated, and put in descending order (lower
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fitness is better).

To evaluate the fitness as mentioned in the Steps 9 and 16 of Algorithm 5, all

selected offers (ui = 1) of a chromosome are applied to the system. Let us consider gene i

with ui = 1, meaning the DR offer is selected. The block number for DR offer i is

obtained from bi, and the DR quantity Rt
j and cost ct

j can be determined. These DR and

shift quantities are applied to the original demand forecast of the system at hour t on load

bus j. OPF is evaluated using Equation (5.1), subject to Equation (5.6), to obtain the new

λ t
j . Similarly, Rt

j, ct
j, and λ t

j are obtained ∀t. This information is used to evaluate

Equations (5.8) and (5.9), where the fitness of a chromosome is the sum of these two

values. If more than one DR offer is cleared at the same bus and hour, the highest offer

cost of the DR offers is used as the marginal DR offer price, and all accepted DR offers

are paid the same marginal price irrespective of their offer block.

After the initial population is generated, the algorithm begins its search by

iterating through a selection-crossover-mutation phase (Steps 13–18 in Algorithm 5) to

create two new child chromosomes (solutions). In each iteration (“generation” of the GA),

two chromosomes are randomly selected using linear bias [131], shown in

Equation (5.10), where “random()” returns a sample of a uniform random variable in the

range [0,1). The function biases the choice of crossover to those chromosomes that are

performing better according to a linear bias parameter, l ∈ (1,2]:

index = p×

(
l−
√

l2−4(l−1) · random()
2(l−1)

)
. (5.10)
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After selecting the two “parent” chromosomes, two points are uniformly randomly

chosen between [1,n]. The chromosomes swap genes within these points (two-point

crossover) to create two new “child” chromosomes. Each gene in the child chromosomes

has probability pm to mutate. If gene i mutates, the genes for ui,bi, and si are randomly

chosen using the same process as in the initial population.

The new chromosomes are evaluated for their fitness and inserted back into the

population. The best p solutions are kept at every generation (elitism). The GA iterates

until the maximum number of generations is reached, or there is no significant change in

the fitness value in a certain fixed number of iterations. The final DR offers are selected at

Step 20 for each gene with ui = 1 of the chromosome corresponding to the least fitness

value (minimum utility payments). Both the new demand curve and the adjusted marginal

energy prices are used to evaluate the LMP of each location, and are posted by the ISO as

the final settlement of the market.

The GA was chosen as a proof-of-concept of the DRX clearing algorithm for its

scalability in cost minimization problems [132], and has been shown to work well in many

power system applications [31], [35], [133]. In our preliminary work, I also explored a

greedy search algorithm [124]. There are multiple metaheuristic (e.g., particle swarm

optimization) or classic optimization techniques for implementing cost minimization of

the DRX; however, the choice of optimization is not the main contribution of this work,

and does not impact the discussion of the results or the conclusions of the work.



www.manaraa.com

109

5.5 Experimental Setup

5.5.1 Power System Test Case Setup

The augmented RTS-79 test case is used to evaluate the economic benefits of the

proposed DRX market clearing technique. Two dates were chosen for the simulation

study to illustrate the DRX market clearing technique. One date had a PJM DR event (23

January 2014), and the other (27 January 2014) did not have a DR event, but had a high

peak LMP [64]. The non-DR event day was chosen to verify the expected advantages of

using DR-as-a-service. The PJM demand curves for the specified dates were scaled to the

test case using the same technique followed in Chapter 3. MATPOWER OPF was used for

running the market simulations [63] to produce LMPs at every bus. The OPF was

evaluated at the same frequency as the day-ahead and real-time electricity markets (i.e.,

one hour resolution).

5.5.2 DRX Offer Data

To set up the DR offers for the two days mentioned above, the size of DR with

respect to the demand for that day was determined to represent the actual DR capacity of

the PJM market. On 23 January 2014, as per the annual report of PJM [64], the total

committed DR for the DR event was 4405 MW at hour 2:00 p.m. Thirteen of the twenty

load zones of PJM participated in this DR event, which had a total demand forecast of

71,946 MW for the same hour. Thus, the percent of demand committed for DR was

∼ 6.1% of the total demand forecast.

Even though the proposed market clearing technique is capable of selecting

multiple DR offers from a single bus, in this case study, at most a single offer for each bus
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at a given time was generated. The maximum curtailment per offer was restricted to 4–7%

of the demand on that bus (similar to the PJM case), and only eight (half of the load buses)

were allowed to have DR offers. Even though the number of blocks per DR offer can vary,

for this simulation, the number of blocks per offer was fixed at ki = 5,∀i = 1, . . . ,n. The

five offer blocks were considered to be equally sized (i.e., each offer block was 1/5 of

4-7% of dt
j, where dt

j is the demand of the bus j at time t for the test case with PJM scaled

demand).

The literature is scarce for designing optimal incentive prices for consumers.

Determining the optimal incentive is a sociology research topic, which is not in the scope

of this paper. To determine the price of the DR offer supply curves, the DR offers are

developed based on the range of retail electricity prices of the PJM region, with the offer

prices for each block randomly selected in the range of 50–300 $/MWh (in ascending

order).

The peak hours of PJM (8:00 a.m. to 11:00 p.m.) were chosen to be the DR

curtailment hours. To mitigate rebound for this simulation, DR was allowed to be shifted

to any other time during the day. This DR shift flexibility was chosen for this case study to

analyze the capability of the algorithm to shift demand to a time that does not significantly

increase utility payments (i.e., LMP). Because the demand is capable of being shifted to

any hour of the day (except the curtailment hour), the shift window size for every offer is

set to si = 23,∀i = 1, . . . ,n between 1:00 a.m. to 12:00 a.m. With the above conditions,

n = 128 DR offers were generated for each day. These numbers are chosen for this

system, but the DRX clearing method described above works for DR offers generated

from any source (e.g., real customer data, state-of-the-art literature DR techniques).
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5.5.3 GA Parameters

The GA for the case study used a population size p = 250. Each chromosome

contained n = 128 genes (i.e., the number of DR offers). At each generation, the index for

the parent chromosomes are chosen using the linear bias function in Equation (5.10) using

a bias parameter l = 1.5, which means that the best solution according to its fitness has a

50% greater chance of being selected than the median solution. For each child

chromosome, each gene has a probability of mutation pm = 0.1. The GA continues until

stopping criteria of 10,000 generations is reached, or 300 consecutive generations without

improvement in the best fitness value.

5.6 Simulation Results and Discussion

To determine the impact of a DRX minimizing utility payments in a day-ahead

market, we analyzed the weighted-load average system marginal energy price, and the

utility payments before and after DR. Although our proposed DRX model was described

with a trigger in Section 5.3, no technique was incorporated any technique for triggering

the DRX in this chapter, two dates were pre-selected as the candidates for

DR-as-a-service. The simulations were conducted in MATLAB R2017a on an Intel Core

i7 3.6 GHz computer with 16 GB of RAM. The GA took 42:06 and 53:11 minutes to

converge for 23 January and 27 January, respectively. Out of 128 offers, 66 were selected

and scheduled for 23 January, and 71 were selected for 27 January. A detailed discussion

of the impact of these DR offers on the bulk-power market are presented in this section.

As discussed in Section 5.5.1, the hourly demand on the augmented test case was

derived by scaling down the PJM system hourly demand. This demand serves as the
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baseline demand for the two days, and is represented by the solid black line in Figure 5.5.

The solid blue line with the right y-axis represents the marginal DR cost for each DR hour.

Based on the DR offers selected by DRX for the two days, the demand curve is modified

for demand curtailment as shown by the red dashed curve, and the demand rebound (shift)

is represented by the green dotted curve. The DR offers considered in this study

(described in Section 5.5.2) operate only between 8:00 a.m. to 11:00 p.m., which is

reflected in Figure 5.5 where the red dashed line only varies between those hours. All

demand plots in Figure 5.5 are the aggregated demand of the load buses on the test case.

Because the shift hours considered in those offers were flexible throughout the day, the

demand rebound is spread across the day and mostly concentrated during off-peak hours.
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Figure 5.5. The cumulative baseline load for each hour across the network (solid black
line), compared to the demand post-curtailment (red dotted line) and demand post-shift
(green dotted line) for the day of (a) 23 January 2014, and (b) 27 January 2014. The solid
blue line represents the weighted-load average DR cost for each hour of DR.

For a given time period, DR is offered on multiple load buses. Based on the

cleared offers, curtailment and rebound can occur at the same hour, but at different load

buses. This can be observed in Figure 5.5, where in most hours curtailment and shift

happen simultaneously. The magnitude of curtailment is relatively high during the
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peak-hours (6:00 p.m.–9:00 p.m.), and shift is relatively high during the mid-day demand

valley (1:00 p.m.–3:00 p.m.). The objective of the DRX is to minimize utility payments,

which occurs when curtailment offers are selected during those hours when the demand

intersects the supply curve at a steep slope, and shifts the demand to those hours when the

demand intersects the flat supply curve (as shown in Figure 5.1). In this case study, the

peak DR activity occurred on 23 January at hour 6:00 p.m. During this DR period, 42.8

MW was curtailed out of the aggregated system demand of 2520.5 MW, i.e., 1.7%

curtailment. For the 27 January simulation, the peak curtailment of 1.6% was deployed

during hour 8:00 p.m. The number of generators in a test case is much lower than in the

real network. The IEEE 24-bus RTS consists of 32 generators, with modified cost

functions as described in the Section 5.5.1. Cumulative generator supply curves similar to

Figure 5.1 were developed for the augmented test case for the two simulation dates, as

shown in Figure 5.6. Even though the test case has significantly fewer generators than the

real system, the supply curve in this simulation is statistically similar to the real PJM

system curve of the same day in terms of price band and shape. The blue-dots represent

each generator on the test case with the corresponding peak offer price. The daily system

load is between the dashed-green and dashed-red lines, representing the daily minimum

and peak demand, respectively. A steeper peak and flatter base supply curve represents

ideal conditions for DR, as small changes in demand can result in significant decrease of

LMP and utility payments. The supply curve of 27 January, shown in Figure 5.6b, is

steeper when compared to 23 January, shown in Figure 5.6a, in the range of demand for

the respective days. Thus, between the two days, 27 January is expected to perform better

for DR.
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For brevity, only the 27 January results are presented in detail in Figure 5.5b,

where the loads are always curtailed when the CBL is above 2200 MW. By observing the

corresponding supply curve in Figure 5.6b, it can be confirmed that the curve is steeper

starting at 2250 MW. The supply curve has a flat offer price between the minimum

demand (1770 MW) and 2050 MW, and, as a result, most of the loads are shifted to hours

when the demand falls below 2000 MW. These observations show that DR-as-a-service is

ideal for curtailing when the supply curve is steep, and shifting to time periods when the

supply curve is relatively flat.

(a) (b)

Figure 5.6. Generator supply curve for the test case (solid blue line), with each generator
represented by a dot for the day of (a) 23 January 2014 and (b) 27 January 2014. The
dashed green line represents the minimum daily demand, and the dashed red line represents
the peak daily demand for each respective day.

In Figure 5.7, the solid blue curve is the PJM system marginal price, and the red

dashed line is the simulated marginal price based on the scaled demand of PJM. An exact

reproduction of PJM prices is not possible, as the test case network structure and number

of generation units is significantly different than the real system. As discussed in

Section 5.5.1, the augmented test case of the IEEE 24-bus system to represent the PJM

network marginal prices. With the available data resources, the augmented test case better
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emulates the real PJM marginal prices than the default fuel-based cost curves (shown in

detail in [54]), observed for the marginal prices in Figure 5.7b during the evening peak

hours that match that of the real system.

In the test case, the marginal price at the peak demand (∼450 $/MWh at 2600

MW) from the supply curve in Figure 5.6a matches the maximum marginal price (∼450

$/MWh at 7:00 p.m.) in the pre-DR case in Figure 5.7a for 23 January. However, in the 27

January case, the pre-DR marginal price at the peak hour was ∼450 $/MWh at 8:00 p.m.

in Figure 5.7b, where the marginal offer at this peak demand was lower at ∼350 $/MWh

for 2450 MW. This is evidence of network congestion, indicating the cheaper generator

(∼350 $/MWh) could not be dispatched due to network constraints, and instead the next

available generator offer of ∼450 $/MWh was cleared. This also explains the large

decrease in LMP post-DR between hours 6:00 p.m. and 9:00 p.m. for 27 January.

0 2 4 6 8 10 12 14 16 18 20 22 24
hour in a day (h)

0
50

100
150
200
250
300
350
400
450
500
550
600
650

m
ar

gi
n

al
 e

n
er

gy
 p

ri
ce

 (
$/

M
W

h
)

PJM system marginal price
simulated marginal price pre-DR
simulated marginal price post-DR

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24
hour in a day (h)

0
50

100
150
200
250
300
350
400
450
500
550
600
650

m
ar

gi
n

al
 e

n
er

gy
 p

ri
ce

 (
$/

M
W

h
) PJM system marginal price

simulated marginal price pre-DR
simulated marginal price post-DR

(b)

Figure 5.7. Actual marginal energy price for the PJM interconnection (solid blue line)
compared to the pre-DR marginal price (dashed red line) and the post-DR price (dotted
green line) for (a) 23 January 2014, and (b) 27 January 2014.

Even though the entire curtailed demand (328 MW on 23 January and 340 MW on

27 January) was shifted to another hour, there is no significant increase in the marginal
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price during any off-peak hour. This holds true because the algorithm was designed to

select only those DR offers that will reduce utility payments during curtailment, while

simultaneously not significantly increasing the payments during rebound hours. Because

the DRX allows DR offers as a service rather than resource, the system marginal price is

only set by the generators that are part of the supply curve. The DR marginal price, shown

in Figure 5.7, only serves as the price for the DR service, but does not set the marginal

price of energy in the bulk-power market.

The objective function of the DRX in this study was to minimize utility payments,

which depends on the aggregated demand and LMP of the load bus. From the discussion

above, it was found that the LMP is reduced during peak-hours, and does not significantly

increase during off-peak hours. This directly reflects utility payment reductions, shown in

Figure 5.8. The red dashed lines represent the hourly payments before DR, and the green

dotted line represents the payments after DR. It can be observed in Figure 5.8b that

between hours 6:00 p.m. and 9:00 p.m., the utility payments reduced to the same point.

This is likely because pre-DR, the marginal generator was creating an LMP for a small

quantity of demand (e.g., the ∼450 $/MWh generator discussed above). Just like in the

marginal energy plot, there is no significant increase in utility payments after the DR and

demand shift.

Table 5.1 presents a comparison of the utility payments and generator revenue

before and after DR for both days. The surplus described in this table is the market

surplus, which is the difference between the utility payments and generator revenue.

Market surplus is an indication of congestion in the network. DR-as-a-service resulted in

higher benefits in terms of utility payment reduction on 27 January than 23 January
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because of the difference in generator supply curves of these two days (discussed earlier in

this section). The peak demand on 27 January intersects on a much steeper region of the

supply curve, where the small changes in demand resulted in larger reduction of LMP

when compared to the supply curve of 23 January. The largest factor in utility payment

reduction is the decrease in LMP, which is highly dependent on the generator supply curve

and network congestion. The utility saved 6.2% in payments by spending only 0.5% of the

initial payment for 27 January, and 2.1% savings by spending 0.4% of the initial payment

for 23 January. The results for 23 January show savings in utility payments, but the market

surplus of the system has increased when compared to the pre-DR case.
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Figure 5.8. Comparison of utility payments pre-DR (red dashed line), and post-DR (green
dotted line) for (a) 23 January 2014, and (b) 27 January 2014.
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Table 5.1. Comparison of payments and revenue for pre-DR and post-DR conditions (in
Million $).

Date Case Utility
Payments

Genera-
tor

Rev-
enue

Surplus
DR

Operation
Cost

Pay-
ment

Benefit

23 January
pre-DR 18.73 18.33 0.40 N.A N.A

post-
DR

18.3 17.9 0.43 0.068 0.39

27 January
pre-DR 13.98 13.05 0.92 N.A N.A

post-
DR

13.12 12.27 0.84 0.069 0.86

5.7 Conclusions

An extended review of DR in electricity markets in terms of advantages,

challenges, and opportunities was presented. In this work, a market model is designed for

the DRX, to integrate DR-as-a-service into existing energy markets. The DRX model

minimizes utility payments using DR services, while simultaneously providing an

opportunity for DR service providers to offer the incremental cost of the service. A

multi-period market clearing algorithm to select DR offers was proposed, where DR offers

have both curtailment and shift information. The multi-period nature of the algorithm

ensures that the selected DR offers do not adversely affect utility payments when the

demand rebounds post-DR. The algorithm was implemented using a GA on an augmented

IEEE 24-bus RTS test case that statistically represents the PJM day-ahead energy market.

The results of the case study of the proposed DRX market clearing method determined

important factors that influence the ability of DRX to reduce utility payments.
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From the two simulations on the augmented IEEE RTS-79 test case, significant

reduction in utility payments was obtained for both days. The utility payments reduced by

6.2% for 27 January, creating a benefit of $864,199 by spending $69,955 on the DR

service, and $393,066 of savings by spending a similar amount ($68,092) for the DR

service for 27 January. The peak DR deployment for 23 and 27 January was 1.7% and

1.6% of the aggregated demand of the system, respectively. By comparing the results of

the two days, it is clear that the benefit (utility payments) from DR-as-a-service depends

heavily on the generator supply curve, demand, and the state of congestion in the network.

It is important that the demand during the load curtailment meets the supply curve at a

steep slope region, where small changes in demand can result in significant savings for

utilities and customers. This factor is why 27 January shows greater savings when

compared to 23 January, even though the quantity of DR curtailed is similar. Additionally,

the demand rebound (shift) should be planned such that it is scheduled during hours where

the supply curve has a relatively flat slope so the price during that time does not

significantly increase.

Even though the quantity of DR was chosen statistically to represent the real

installed DR capacity of a market, there is still a need to design methods to determine DR

offer blocks based on real customer load models, and offer prices based on customer

willingness models. Along with the realistic DR offer blocks and costs, the shift window

should be developed with realistic window sizes according to customer behavior.
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CHAPTER 6 Conclusions and Future Work

6.1 Conclusions

A three-layer augmentation-based technique has been explored to develop test case

generator data to represent the cost and emission performance of a real deregulated power

system. This augmentation based technique utilizes the existing state-of-art test cases

which contain synthetic bus, line, and generator information that statistically represent a

real power system. The first layer of augmented data proposed in Chapter 3 changes the

cost functions of the test case generators so that they produce dynamically changing

electricity cost of an electricity market over a time-series simulation. The data required to

develop the cost functions come from the electricity market generator offer data. This

offer data is masked of the generators’ identity. All the similar offers were grouped using

statistical pattern recognition to utilize them on a small test case. The proposed technique

was tested on eight different test cases from six buses to 2000 buses and produced three

years of time-series simulation. This time-series of energy price was compared to the

real-market energy price. The proposed technique was found to accurately represent the

electricity market with the goodness of fit close 65%.

The second layer of augmented data proposed in Chapter 4.4.1 uses the hourly fuel

data of a real electricity market to develop synthetic generator data with an energy mix to

represent the real system. The capacity factor of the test case generators and a capacity

factor of a fuel type was used as the attribute to augment the market energy mix on the test

case. Nineteen fuel-turbine types and their capacity factors have been analyzed to develop

the augmented test case data. To the best of my knowledge, this is the highest number of
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fuel types on a publicly available test case. Three test cases were augmented using the

proposed method and one-year time-series simulation results were used to compare the

energy mix with the real system. The energy mix on the test case was found to represent

the real system closely. The maximum error in the energy mix of any fossil-fueled source

was evaluated close to 2.3% (coal) when compared to the 46% (natural gas) on the

state-of-art test case.

The third augmented layer uses the EIA-923 national generator data to develop the

heat curves of each of the fuel-generator type. Over 30 fuel-turbine types were analyzed to

obtain the heat curves. These heat curves are assigned to the test case generators over the

fuel type so that the emissions can be evaluated. To the best of my knowledge, this is the

highest number of fuel-turbine types of heat curves available on a publicly available test

case. The augmented test case are provided with emission factors along with the emission

control factor to estimate the harmful GHG and AP emissions accurately. The GHG (CO2)

emission estimated from this technique was 93% accurate to the real system whereas state

of the art could not represent the emissions.

With the available market-based test cases, the factors affecting energy demand

response was explored. The generator supply curve was found to be one of the most

influential factors that determine the revenue for the DR in the energy market. An

aggregated DR model is presented in Chapter 5 that presents the advantages of having a

dedicated market to trade DR as-a-service. The proposed technique shows the potential

revenue on a day that the real market did not call for a DR event.

The contribution of this dissertation will provide the power systems research

community with one of the essential test case data that will result in accurate estimation of
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costs and emission from the power system. These test case data will allow the researchers

to explore opportunities to improve revenue and reduce emissions to create a sustainable

power system.

6.2 Limitations

Even though this dissertation provides the research community a set of simulation

resources, there are limitations to what extent this work can be used. This work was

intended to emulate the deregulated energy market operation, which includes unit

commitment and economic dispatch. With all the available realistic data from the

electricity markets, only economic dispatch was implemented in this dissertation. This

work is aimed for researchers who have limited access to electricity market data and want

to conduct economic analysis based on steady state operation.

The wholesale electricity markets have multiple sectors such as capacity markets,

energy, and ancillary service market. Most of the transactions in the ancillary service

market depend on the dynamics of the system. Regulation market is one such service

which compensates generators for providing frequency regulation during network

disturbances such as loss of generation, sudden change in load. The test cases used in this

work are not equipped with the data required to conduct dynamic analysis. Voltage

regulation is another ancillary service that the test cases used in this work are not capable

of simulating.

No part of this work is developed to predict the electricity market prices. All the

results presented are based on the recent past data, and is intended to analyse the cost and

emission changes with new energy technologies. No part of this work is intended to be
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used to predict the future prices or operation of any electricity market and used for any

market malpractices. All publicly available data from this work is intended for research

purpose and not for any commercial purpose. No real transactions for any electricity

market is to be made from the results from this work.

6.3 Future Work

This work presented a data-driven technique to augment test cases. There is a

possibility of developing a complete test case by analyzing the enormous open-source data

from various organizations. These test cases can be utilized to perform complex emission

constrained optimal power flows. The DRX can be extended to trade carbon credits or

renewable portfolio credits, using this realistic test cases. The potential value of DR

service can be extended not only to benefit the entities by the economy and physical

security, but also improve the sustainability of the existing power system.

A fully deregulated system simulated can be realized in which the test case will be

capable of simulating all the major markets and replicate the costs. The additional

information that needs to be added to the test case for performing all the tasks of a

day-ahead market would be (a) generator operational limits, (b) unit commitment

information. The ancillary service market for reserve can also be implemented provided

the data for regulation and reserve can be attributed to generators in test cases. The cost of

a forward capacity market can be added to the entire installed capacity of the test case as a

scaled cost from the real market. The electricity markets publish the forward capacity

market annual cost per MW-year.
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